Abstract:
Systems, methods, apparatuses, and computer program products for robust system information (SI) delivery are provided. One method may include receiving, by a network node, a SI request from a UE, and transmitting an acknowledgement of the SI request to the UE. In one example, the method may include selecting, by the network node, a subset of downlink beams for transmitting the requested SI message. In an embodiment, the selecting may include selecting the subset of downlink beams based on SI requests associated with SS/PBCH blocks, and the subset of downlink beams associated with the SI requests are used for the delivery of an SI message.
Abstract:
In accordance with the exemplary embodiments of the invention there is at least a method and apparatus to perform receiving, by a user equipment, signaling including at least one of a plurality of reference signal received power (RSRP) threshold levels; determining, by the user equipment, a power class parameter associated with the user equipment; and selecting, based on at least the at least one of the plurality of reference signal received power threshold levels and said power class parameter, a resource set of one or more resource sets to perform a network access procedure with a communication network.
Abstract:
In accordance with an example embodiment, there is disclosed a method comprising: transmitting a first downlink channel via a primary beam within n slots, wherein n is a time between the transmission of an uplink control channel carrying HARQ information corresponding to the first downlink channel transmitted via the primary beam and a next time instance that a second downlink channel is configured be monitored from a secondary beam; receiving HARQ feedback within m slots calculated from a slot number configured to monitor the second downlink channel on at least one secondary beam, wherein m is time between a scheduled downlink channel and a next downlink channel monitoring instance via the secondary beam; and in response to receiving the HARQ feedback, ignoring a monitored downlink channel pattern and scheduling at least one user device using the primary beam on the slot number configured to monitor the second downlink channel on the at least one secondary beam.
Abstract:
Signaling is received (or transmitted) to configure a UE with multiple transmit beams, each for receiving beam-specific DCI. A beam-specific current DCI is received at the UE (or transmitted from a network) on the transmit beam(s), including information about beam-specific previous DCIs transmitted to the UE on any of the multiple transmit beams within a predefined time window preceding a time unit in which the current DCI was received. Information about the beam-specific previous DCIs is used to determine that at least one of the multiple transmit beams has been blocked. Each of the multiple transmit beams that have been determined to be blocked is reported to (and received by) the network. In response to receiving from the UE a report indicating at least one multiple transmit beams has been blocked, the network reconfigures the UE with a different set of multiple transmit beams each for beam-specific DCI.
Abstract:
A method, apparatus and computer program product are provided for multimedia broadcast single frequency network measurements. A method is provided for receiving a multimedia broadcast single frequency network measurement request (32); and measuring, at a user equipment, multimedia broadcast single frequency network parameters, wherein the multimedia broadcast single multimedia broadcast single frequency network measurement is independent of the user equipment radio resource control state (34).
Abstract:
A method, apparatus and software related product (e.g., a computer readable memory) for efficient measurement reporting by UEs to provide, for example, lower UE power consumption, efficient use of network resources, small cell ottloading, etc., in wireless networks such as LTE/LTE-A systems that can be also applied in inter-system cases such as a mix of UTRAN and E-UTRAN as one non-limiting example is presented. The UE performs measurements and event evaluation as in conventional LTE/LTE-A systems, but for certain cells/carriers an event triggered measurement report, which conventionally would be transmitted when time-to-trigger (TTT) expires (see details e.g. in 3GPP TS 36.331), is not transmitted but regarded as buffered (e.g., in a memory or buffered memory of the UE) as a candidate measurement report, when a predefined criterion is not met. This predefined criterion is e.g. a need at the UE to request network resources for uplink transmission by the UE. Thus, a UE being in connected mode but not actively transmitting data, will not report measurements resulting in likely handovers.
Abstract:
A method, apparatus and computer program product are provided for multimedia broadcast single frequency network measurements. A method is provided for receiving a multimedia broadcast single frequency network measurement request (32); and measuring, at a user equipment, multimedia broadcast single frequency network parameters, wherein the multimedia broadcast single multimedia broadcast single frequency network measurement is independent of the user equipment radio resource control state (34).
Abstract:
A UE, communicating with a network node by using TDD, determines a downlink/uplink configuration between the UE and the network node, and a maximum uplink duty cycle for candidate uplink transmit beam(s). The UE compares the maximum uplink duty cycle with an uplink duty cycle of the determined downlink/uplink configuration, and provides to the network node information associated with the comparison. The network node receives the information associated with the comparison and determines whether to modify the downlink/uplink configuration between the user equipment and the network node based on the information associated with the comparison. The network node indicates, in response to a determination the downlink/uplink configuration should be modified, a modified downlink/uplink configuration to the user equipment.
Abstract:
There is provided determining one or more resources on a wireless medium of a wireless communication system for a radar allocation; and transmitting resource allocation information indicating the radar allocation.
Abstract:
In accordance with an example embodiment, there is disclosed a method comprising: receiving, by a user equipment in a wireless network, beam information from a serving cell and each neighboring cell; assessing a beam quality of the serving cell and each neighboring cell from the information; determining a subset of the serving cell and neighboring cells comprising the serving cell and each neighboring cell with a beam quality within a first offset of the serving cell and each neighboring cell with a highest quality beam; ranking each cell of the subset in descending order from highest to lowest quality.