Abstract:
An instrument carriage provides control of a surgical instrument coupled to the instrument carriage. The instrument carriage includes a control surface that is coupled to the surgical instrument to provide the control. A detection pin having a first distal end that extends from the control surface is coupled to the instrument carriage. A sensor fixed relative to the instrument carriage detects a position of the detection pin. A carriage controller coupled to the sensor, provides a signal that indicates at least a first state and a second state responsive to a distance between the distal end of the detection pin and the control surface. The signal may indicate if an instrument sterile adapter is coupled to the control surface of the instrument carriage. A third state of the signal may indicate if a surgical instrument is coupled to the instrument sterile adapter.
Abstract:
An instrument carriage provides control of a surgical instrument coupled to the instrument carriage. The instrument carriage includes a control surface that is coupled to the surgical instrument to provide the control. A detection pin having a first distal end that extends from the control surface is coupled to the instrument carriage. A magnet is fixed to a proximal end of the detection pin. A carriage controller provides an indication that the surgical instrument is present on the instrument carriage when movement of the detection pin causes an output signal from a Hall effect sensor to exceed a presence threshold value that is stored in the carriage controller as part of a calibration procedure during the assembly of the instrument carriage. Surgical instrument removal may be indicated when detection pin movement causes the output signal to be less than a removal threshold value of less than the presence threshold value.
Abstract:
Methods, apparatus, and systems for controlling a telesurgical system are disclosed. In accordance with a method, a first tool connected to a first manipulator of the system, and a second tool connected to a second manipulator of the system, are controlled. A swap of the tools such that the first tool is connected to the second manipulator and the second tool is connected to the first manipulator is then detected. The first tool connected to the second manipulator and the second tool connected to the first manipulator are then controlled.
Abstract:
An instrument carriage provides control of a surgical instrument coupled to the instrument carriage. The instrument carriage includes a control surface that is coupled to the surgical instrument to provide the control. A detection pin having a first distal end that extends from the control surface is coupled to the instrument carriage. A magnet is fixed to a proximal end of the detection pin. A carriage controller provides an indication that the surgical instrument is present on the instrument carriage when movement of the detection pin causes an output signal from a Hall effect sensor to exceed a presence threshold value that is stored in the carriage controller as part of a calibration procedure during the assembly of the instrument carriage. Surgical instrument removal may be indicated when detection pin movement causes the output signal to be less than a removal threshold value of less than the presence threshold value.
Abstract:
A sterile adapter for coupling a surgical instrument and a surgical instrument manipulator includes a bottom component and a coupling component. The bottom component includes a bottom component opening with a bottom lip having a locking mechanism. The coupling component is rotatably coupled to the bottom component. The coupling component includes an engagement feature that engages the surgical instrument manipulator. The coupling component further includes a locking mechanism opening that engages the locking mechanism when the engagement feature has not engaged the surgical instrument manipulator. The coupling component may include a retention tab that is aligned with the keyway to insert the coupling component into the bottom component opening and then misaligned with the keyway to retain the coupling component in the bottom component opening. A ramp may be provided on a leading edge of a pocket to facilitate engaging the coupling component with the surgical instrument manipulator.
Abstract:
A teleoperated surgical system has an instrument manipulator that includes a first carriage driver and a second carriage driver that each provide independent rotary motion. Each carriage driver includes a first engagement feature. A surgical instrument includes two instrument drivers that each receive the rotary motion from one of the two carriage drivers. Each instrument driver includes a second engagement feature that engages the first engagement feature to positively couple the carriage driver to the instrument driver. The instrument drivers are rotationally coupled together. A manipulator controller controls rotation of the two carriage drivers and imparts a motion to the second carriage driver that is contrary to the rotation of the first carriage driver until the first engagement features positively engage the second engagement features. The surgical instrument may include an instrument shaft that can rotate indefinitely. The instrument drivers may be rotationally coupled to the instrument shaft.
Abstract:
Methods, apparatus, and systems for controlling a plurality of manipulator assemblies of a robotic system. In accordance with a method, a first plurality of sensor signals are received at a plurality of joint space interface elements from a plurality of connector input elements via a first mapping between the joint space interface elements and joints of the first manipulator assembly. The connector input elements are operable to couple to only one manipulator assembly at a time. The received first sensor signals are then processed with a joint controller so as to control the first manipulator assembly. A second plurality of sensor signals are then received from the connector input elements at the joint space interface elements via a second mapping different than the first mapping. The received second sensor signals are then processed with the joint controller so as to control a second manipulator assembly different than the first manipulator assembly.