Abstract:
A fixture and method for installing turbine buckets is disclosed. The fixture is adapted for mounting a plurality of turbine buckets with dovetails to a rotor wheel of a turbomachine that is separated from an adjacent rotor wheel by a spacer wheel, the rotor wheel and the spacer wheel each having a plurality of circumferentially aligned dovetail slots, the fixture includes: a turbine bucket holder having a dovetail that is configured to engage with one of the dovetail slots of the spacer wheel. The profile of a bucket holder dovetail slot substantially aligns the dovetail of the turbine bucket with a dovetail slot of the rotor wheel for at least partial transfer of a turbine bucket thereto.
Abstract:
A fixture for restraining a wheel of a turbomachine has a dovetail section adapted for insertion into a dovetail slot of the wheel. A mounting section is located adjacent to, or formed integrally with, the dovetail section. At least one coupling ring is attached to the mounting section, and the coupling ring is adapted to be secured to a stationary anchoring point via a restraint. The stationary anchoring point includes at least one counterbore assembly having a coupling ring attached thereto. The counterbore assembly is adapted to be secured to a stationary structure. The stationary structure may be a shell, a flange or a casing of the turbomachine.
Abstract:
A tool for installing a turbomachine component in a first dovetail slot of a first component mount is provided. The tool may include a tool mount having a body for selective fixing in a second dovetail slot of a second component mount adjacent to the first component mount. The tool may also include a lever arm including a first portion, an intermediate pivot for pivotally engaging the tool mount, and a second portion for engaging the turbine component. Actuating the lever arm against the tool mount causes the second portion of the lever arm to install the turbomachine component into the first dovetail slot of the first component.
Abstract:
A combustor assembly alignment system comprises an alignment plate comprising a plurality of alignment plate holes that align with a plurality of combustor assembly flange holes, an alignment plate securement system configured to secure the alignment plate to a combustor assembly flange by passing through a first alignment plate hole of the alignment plate and a first combustor assembly flange hole of the combustor assembly flange, and an alignment tube that extends away from the alignment plate, wherein a hollow interior of the alignment tube aligns with a second combustor assembly flange hole when the alignment plate is secured to the combustor assembly flange.
Abstract:
A method includes generating an exhaust gas from combustion gases with a turbine; recirculating the exhaust gas along an exhaust recirculation flow path; reducing moisture within the exhaust gas along the exhaust recirculation path with an exhaust gas processing system; providing the exhaust gas to a first exhaust gas inlet of an exhaust gas compressor for compression; and providing the exhaust gas from the exhaust recirculation path to a second exhaust gas inlet separate from the first exhaust gas inlet for cooling, preheating, sealing, or any combination thereof.
Abstract:
A mold assembly for forming a cast component includes a primary mold structure having a predetermined geometry portion for shaping a primary region of the cast component. Also included is at least one additional mold structure integrated with the primary mold structure, the at least one additional mold structure comprising a geometry for defining at least one feature in the cast component.