Abstract:
Methods and systems for a handheld portable communication device for configuring connection to and use of local and remote resources are disclosed and may include discovering available networks and resources, establishing a route between the handheld wireless communication device and a selected one or more of the available resources via a selected one or more of the available networks based on user preference criteria stored in the handheld wireless communication device, and communicating multimedia data between the handheld wireless communication device and the selected one or more of the available resources via the established route. The established route may be dynamically adjusted, based on network availability and bandwidth. The handheld wireless communication device may communicate utilizing a plurality of wireless protocols. The preference criteria stored in the handheld wireless communication device may be dynamically adjusted. The resources may be local or remote to the handheld wireless communication device.
Abstract:
A wireless mobile communication (WMC) device may discover available networks, and available local and/or remote resources. The WMC device may configure routes utilizing one or more of discovered resources and one or more available networks. The routes may be utilized to performed operations requested via the WMC device. A standardized language and/or protocol may be utilized in discovering and/or communicating with available resources and/or networks. The standardized language and/or protocol may enable commonality among the discovered networks and/or resources, and encryption of data communicated through the established routes. The standardized language and/or protocol may be updated and/or modified to incorporate new resources either by direct interactions between said new resources and the WMC device, or via existing available resources and/or networks. The discovery of resources and/or establishment of routes may be user-triggered, or it may be based on user preference information.
Abstract:
A user's request via a portable or handheld wireless communication device (HWCD) to process data may result in discovery of one or more networked resources capable of handling the processing. One or more communication routes may be established between one or more discovered network resources and one or more of the HWCD and a networked terminating device. The portable HWCD may be configured as a gateway. The user's identity may be determined and the user's personal networking preferences may be acquired. Based user's preferences, a route may be established between discovered networked resources and one or more of the HWCD and the networked terminating device. The user's identity may be authenticated. Data may undergo rate and/or format conversion. The data may be protected by secure operations. One or more of the HWCD and the networked terminating device may consume or render the requested data.
Abstract:
Systems and methods for embedded tamper mesh protection are provided. The embedded tamper mesh includes a series of protection bond wires surrounding bond wires carrying sensitive signals. The protection bond wires are positioned to be vertically higher than the signal bond wires. The protection wires may be bonded to outer contacts on the substrate while the signal bond wires are bonded to inner contacts, thereby creating a bond wire cage around the signal wires. Methods and systems for providing package level protection are also provided. An exemplary secure package includes a substrate having multiple contacts surrounding a die disposed on an upper surface of the substrate. A mesh die including a series of mesh die pads is coupled to the upper surface of the die. Bond wires are coupled from the mesh die pads to contacts on the substrate thereby creating a bond wire cage surrounding the die.
Abstract:
A universal authentication token is configured to securely acquire security credentials from other authentication tokens and/or devices. In this manner, a single universal authentication token can store the authentication credentials required to access a variety of resources, services and applications for a user. The universal authentication token includes a user interface, memory for storing a plurality of authentication records for a user, and a secure processor. The secure processor provides the required cryptographic operations to encrypt, decrypt, and/or authenticate data that is sent or received by universal token. For example, secure processor may be used to generate authentication data from seed information stored in memory.
Abstract:
Methods and systems provide secure functions for a mobile client. A circuit may include a memory configured to store a server access key and a first function authentication key. The circuit may also include authentication circuitry configured to access the server access key to authenticate access to a server to download a function capsule comprising a first function and to access the first function authentication key to authenticate use of the first function of the function capsule.
Abstract:
A secure processor such as a TPM generates one-time-passwords used to authenticate a communication device to a service provider. In some embodiments the TPM maintains one-time-password data and performs the one-time-password algorithm within a secure boundary associated with the TPM. In some embodiments the TPM generates one-time-password data structures and associated parent keys and manages the parent keys in the same manner it manages stand
Abstract:
A handheld wireless communication device (HWCD) establishes an ad hoc network comprising interconnected networks for a user. The HWCD gains access to content on a first device and controls communication of the content from the first device via the HWCD to a second device. The HWCD enables the second device to consume the content. The content may be streamed from the first device via the HWCD to the second device. The first device is a service provider network device or other network device. The access may be authenticated and/or secure. Secure access to the content is extended from the first device to the second device. The ad hoc network is configured and/or reconfigured until communication is complete. The HWCD comprises multiple wireless interfaces. The ad hoc network comprises a PAN, WLAN, WAN and/or cellular network. The HWCD may hand-off among base stations during communication of the content.
Abstract:
Dynamically splitting a job in wireless system between a processor other remote devices may involve evaluating a job that a wireless mobile communication (WMC) device may be requested to perform. The job may be made of one or more tasks. The WMC device may evaluate by determining the availability of at least one local hardware resource of the wireless mobile communication device in processing the requested job. The WMC device may apportion one or more tasks making up the requested job between the wireless mobile communication device and a remote device. The apportioning may be based on the availability of the at least one local hardware resource.
Abstract:
A communication device within a GNSS group propagates GNSS assistance data to one or more other communication devices in the GNSS group. The GNSS assistance data includes ephemeris received from one or more GNSS satellites and/or predicted ephemeris. As a source device, the communication device generates, and/or acquires from other resources such as a remote location server, the predicted ephemeris. As a destination device, the communication device receives existing GNSS assistance data from a source device and/or other communication devices in the GNSS group. A GNSS position for the communication device and corresponding time information are used to refresh the received GNSS assistance data. In instances where the communication device further acts as a relay device, the refreshed GNSS assistance data is relayed to other communication devices over wired and/or wireless direct device-to-device connections utilizing appropriate communication technologies such as WiFi, Bluetooth and/or Bluetooth low energy.