Abstract:
An imprint template includes a first region and a second region located in the periphery of the first region. The first region is provided with a first imprint structure configured to imprint a first film layer pattern into a base material in a product region of a target substrate. The second region is provided with a second imprint structure configured to imprint a second film layer pattern into the base material in the periphery of the product region of the target substrate. And the second film layer pattern is used for assessing imprint quality of the first film layer pattern.
Abstract:
A curved surface LCD panel and a display device are disclosed. The curved surface LCD panel includes an array substrate and an opposite substrate parallel with each other and curved in a same direction, wherein edge zones of the array substrate and the opposite substrate having plural optical retardation zones, each of the optical retardation zones on the array substrate being corresponding to one of the optical retardation zones on the opposite substrate, and two corresponding optical retardation zones constituting a zone group; a LC layer located between the array substrate and the opposite substrate; and an optical compensation film attached at each of the optical retardation zones in at least one zone group; wherein the optical compensation film being perpendicular to an optical axis of the optical retardation zone attached with the optical compensation film and having an equal optical retardation with the optical retardation zone.
Abstract:
A capsule Quantum Dot (QD) composition, a light-emitting diode, preparation methods and a display apparatus are provided. The capsule QD composition includes a mesoporous material in submicron or micron order, quantum dots (QDs) adsorbed in pores of the mesoporous material, and an encapsulation material for packaging the QDs in the pores of the mesoporous material.
Abstract:
A transflective liquid crystal display panel, a manufacturing method thereof and a display device are disclosed. The transflective liquid crystal display panel includes: a first substrate (1) and a second substrate (2) disposed oppositely and a liquid crystal layer (3) between the first substrate (1) and the second substrate (2). The first substrate (1) and the second substrate (2) include transmissive areas and reflective areas. Transmissive areas of the first substrate (1) are provided with a first homogenous alignment layer (11), transmissive areas of the second substrate (2) are provided with a second homogenous alignment layer (21), and the alignment direction of the first homogenous alignment layer (11) and the alignment direction of the second homogenous alignment layer (21) have a predetermined angle. Reflective areas of the first substrate (1) are provided with a third homogenous alignment layer (12) and reflective areas of the second substrate (2) are provided with a homeotropic alignment layer (22). This can realize a transflective liquid crystal display panel with simple structure.
Abstract:
A display device comprises: a first substrate (20), a first polarizer (10), a second polarizer (50), a first electrode (30), a second electrode (31), an electrically controlled birefringence crystal layer (40). The first polarizer (10) is attached to the first substrate (20). The second polarizer (50) is disposed to face the first substrate (20) and parallel to the first substrate (20). The first electrode (30) and the second electrode (31) are disposed between the first substrate (20) and the second polarizer (50) and separate from each other. The electrically controlled birefringence crystal layer (40) is disposed between the first electrode (30) and the second electrode (31) and has a primary electro-optic effect. The corresponding manufacturing method for a display is also provided.
Abstract:
Embodiments of the present invention provide a light source structure for optical fiber display device and an optical fiber display device. The light source structure for optical fiber display device comprises a light source. The light source structure for optical fiber display device is of a hollow truncated cone structure, a upper surface, a side surface and a lower surface of the hollow truncated cone structure are constituted by the light source, a reflection cover and an optical fiber connection surface, respectively, a light emitting surface of the light source is disposed to face the optical fiber connection surface, a reflection surface of the reflection cover is provided inside the hollow truncated cone structure, and the optical fiber connection surface has an optical fiber connection region that corresponds to the position of the light source and has a same size as the light source.