Abstract:
Multi-layer golf balls having a hard, high compression center, a relatively soft intermediate layer, and a stiff outer cover layer, are provided. The outer surface hardness of the intermediate layer is less than that of both the center and the outer cover layer.
Abstract:
A golf ball includes a single core formed from a substantially homogenous rubber composition, an inner cover disposed about the core, and an outer cover. The inner cover includes an ionomeric material and has a hardness of about 60 Shore D or greater. The outer cover layer is disposed about the inner cover layer, is formed from a castable polyurea or polyurethane, and has a material hardness of about 60 Shore D or less. The outer surface of the core has a trans content of about 12% or less and a hardness of about 71 to 88 Shore C, the geometric center of the core has a trans content of about 10% or less and a hardness of about 70 to 80 Shore C, and the core surface hardness is greater than the geometric center hardness by about 1 to 10 Shore C to define a shallow positive hardness gradient.
Abstract:
A golf ball includes a single core having an outer surface and a geometric center. The core is formed from a substantially homogenous rubber composition. An inner cover layer is disposed about the core, the inner cover including a high-acid ionomer and having a material hardness of about 66 to 75 Shore D. The high-acid ionomer has an acid content of about 16% or greater. An outer cover layer is disposed about the inner cover layer, the outer cover including a polyurethane and having a material hardness of about 38 Shore D to about 56 Shore D. The core surface hardness is from 0 Shore C to 15 Shore C lower than the geometric center hardness to define a hardness gradient.
Abstract:
The present invention is directed to golf balls consisting of a dual-layer core and a cover. The core consists of a center having a center hardness of 50 Shore C or greater and formed from a low modulus HNP composition, and an outer core layer having a surface hardness of 75 Shore C or greater and formed from a high modulus HNP composition. Low modulus HNP compositions of the present invention have a modulus of from 1,000 psi to 50,000 psi. High modulus HNP compositions of the present invention have a modulus of from 25,000 psi to 150,000 psi. The modulus of the highly neutralized copolymer of the low modulus HNP is at least 10% less than the modulus of the highly neutralized copolymer of the high modulus HNP composition. The cover consists of an inner cover layer formed from a thermoplastic composition and an outer cover layer formed from a polyurethane or polyurea composition.
Abstract:
Golf ball having at least three layers comprising ionomeric and/or HNP compositions, wherein for each two adjacent layers, a relationship is established between a ratio of the volumes of the two adjacent layers and a ratio of the percent neutralizations of those two layers such that the volumes and % neutralizations of all layers are interrelated and interdependent to produce unique and desirable playing characteristics. In one embodiment, a golf ball of the invention has T layers, wherein T≥3 and each of T layers has a different volume “V” and comprises an ionomeric and/or HNP composition having a different % neutralization “N”. Furthermore, each of n inner layers of the T layers (n
Abstract:
A golf ball includes a single core having an outer surface and a geometric center. The core is formed from a substantially homogenous rubber composition. An inner cover layer is disposed about the core, the inner cover including a high-acid ionomer and having a material hardness of about 66 to 75 Shore D. The high-acid ionomer has an acid content of about 16% or greater. An outer cover layer is disposed about the inner cover layer, the outer cover including a polyurethane and having a material hardness of about 38 Shore D to about 56 Shore D. The core surface hardness is from 0 Shore C to 15 Shore C lower than the geometric center hardness to define a hardness gradient.
Abstract:
Golf ball having at least three layers comprising an ionomeric and/or HNP composition, wherein for each two adjacent layers, a relationship is established between a ratio of the volumes of the two adjacent layers and a ratio of the percent neutralizations of those two layers such that the volumes and % neutralizations of all layers are interrelated and interdependent to produce unique and desirable playing characteristics. In one embodiment, each of T layers, wherein T≥3, has a different volume “V” and comprises an ionomeric/HNP composition having a different % neutralization “N”; and wherein each of n inner layers of the T layers (n
Abstract:
The present invention is directed to multi-layer golf balls including a layer formed from a composition comprising a relatively soft or low modulus HNP, a layer formed from a composition comprising a relatively hard or high modulus HNP, an inner cover layer formed from a thermoplastic composition, and an outer cover layer.
Abstract:
Golf ball having at least three layers comprising an ionomeric and/or HNP composition, wherein for each two adjacent layers, a relationship is established between a ratio of the volumes of the two adjacent layers and a ratio of the percent neutralizations of those two layers such that the volumes and % neutralizations of all layers are interrelated and interdependent to produce unique and desirable playing characteristics. In one embodiment, each of T layers, wherein T≧3, has a different volume “V” and comprises an ionomeric/HNP composition having a different % neutralization “N”; and wherein each of n inner layers of the T layers (n
Abstract:
A golf ball includes a single core formed from a substantially homogenous rubber composition, an inner cover disposed about the core, and an outer cover. The inner cover includes an ionomeric material and has a hardness of about 60 Shore D or greater. The outer cover layer is disposed about the inner cover layer, is formed from a castable polyurea or polyurethane, and has a material hardness of about 60 Shore D or less. The outer surface of the core has a trans content of about 12% or less and a hardness of about 71 to 88 Shore C, the geometric center of the core has a trans content of about 10% or less and a hardness of about 70 to 80 Shore C, and the core surface hardness is greater than the geometric center hardness by about 1 to 10 Shore C to define a shallow positive hardness gradient.