Abstract:
Various mechanisms for paging link-budget-limited (LBL) devices are disclosed, including: (1) transmitting paging message with non-conventional paging identifier; (2) transmitting paging message(s) with increased power; (3) repeating transmission of paging message to support combining at receiver. Various mechanisms for UE device to signal LBL status are disclosed, including, transmitting status flag or special value of DRX cycle to network node as part of tracking area update and/or attach request. The network node informs a base station of the device's LBL status as part of a paging message. (The network node may, e.g., assign an S-RNTI to the LBL device from a reserved subset of S-RNTI space.) The base station invokes a paging enhancement mechanism when paging an LBL device. Alternatively, the base station may page UE devices without knowledge of LBL status, e.g., by counting paging attempts for a given UE, and boosting power after the Nth paging attempt.
Abstract:
This disclosure relates to techniques for estimating baseband power consumption and using the baseband power consumption estimation to select baseband operation features. According to some embodiments, one or more baseband power consumption modifiers occurring during an estimation window may be identified. Baseband power consumption of the wireless device during the estimation window may be estimated based on the identified baseband power consumption modifiers occurring during the estimation window. Baseband data throughput of the wireless device during the estimation window may also be estimated. One or more baseband operation characteristics may be selected based at least in part on the estimated baseband power consumption during the estimation window, possibly in conjunction with the estimated baseband data throughput during the estimation window, current wireless medium conditions, and/or other considerations.
Abstract:
A wireless device comprises a primary antenna, a primary transceiver, one or more secondary antennas and one or more receive diversity chains. The receive diversity chains, in some embodiments, include transceiver capability. The wireless device measures and collects various statistics. Based on the statistics, the wireless device enables or disables one or more of the receive diversity chains with respect to a cellular radio access technology (RAT). A disabled receive diversity chain, in some instances is then powered down. During an interval when a receive diversity chain is disabled, the control logic periodically or on an event-driven basis enables a given receive diversity chain to probe channel quality indicator (CQI) and channel rank values. In some embodiments, a time interval for collecting a portion of the statistics, is adapted or backed off in anticipation of use of the receive diversity chain, based on traffic circumstances.
Abstract:
This disclosure relates to techniques for estimating baseband power consumption and using the baseband power consumption estimation to select baseband operation features. According to some embodiments, one or more baseband power consumption modifiers occurring during an estimation window may be identified. Baseband power consumption of the wireless device during the estimation window may be estimated based on the identified baseband power consumption modifiers occurring during the estimation window. Baseband data throughput of the wireless device during the estimation window may also be estimated. One or more baseband operation characteristics may be selected based at least in part on the estimated baseband power consumption during the estimation window, possibly in conjunction with the estimated baseband data throughput during the estimation window, current wireless medium conditions, and/or other considerations.
Abstract:
Various mechanisms for paging link-budget-limited (LBL) devices are disclosed, including: (1) transmitting paging message with non-conventional paging identifier; (2) transmitting paging message(s) with increased power; (3) repeating transmission of paging message to support combining at receiver. Various mechanisms for UE device to signal LBL status are disclosed, including, transmitting status flag or special value of DRX cycle to network node as part of tracking area update and/or attach request. The network node informs a base station of the device's LBL status as part of a paging message. (The network node may, e.g., assign an S-RNTI to the LBL device from a reserved subset of S-RNTI space.) The base station invokes a paging enhancement mechanism when paging an LBL device. Alternatively, the base station may page UE devices without knowledge of LBL status, e.g., by counting paging attempts for a given UE, and boosting power after the Nth paging attempt.
Abstract:
A user equipment (UE) device may be configured to effectively manage coexistence of multiple radio access technologies (RATs) on the device. Respective controllers responsible for at least partially managing wireless communications according to corresponding respective RATs may communicate to each other expected data transfer patterns that take place over their respective communications links, including application-specific data transfer patterns and data-transfer-mechanism-specific data transfer patterns. The RAT controllers may manage their respective data transfers according to the expected data-transfer pattern information associated with the other RATs received from each in order to prevent data transmission by the device over one RAT link interfering with data transmission of the device over another RAT link. The expected data pattern information may be sent in messaging of a specific type with indexes determined based at least on a status of the data transfer mechanism and a connectivity status of the UE device.
Abstract:
A system is configured for reconfiguration of a Synchronization Signal Block (SSB) pattern. The system is configured for obtaining data including a configuration for a Synchronization Signal Block (SSB) transmission carrying a physical broadcast channel (PBCH), the configuration specifying, for an SSB of the configuration, resource elements (REs) allocated for transmitting a primary synchronization signal (PSS) to a user equipment (UE) and REs allocated for transmitting a secondary synchronization signal (SSS) to the UE. The system is configured for selecting a set of REs that are unused in the configuration for the SSB transmission, specifying a filling sequence for extending a synchronization signal or an SSB to the set of REs that are unused in the configuration of the SSB transmission, generating data including an enhanced configuration for the SSB transmission that includes the extended synchronization signal or the extended SSBs, and transmitting the SSB transmission using the enhanced configuration.
Abstract:
Apparatuses, systems, and methods for a wireless device to perform substantially concurrent communications with a next generation network node and a legacy network node. The wireless device may be configured to stablish a first wireless link with a first cell according to a RAT, where the first cell operates in a first system bandwidth and establish a second wireless link with a second cell according to a RAT, where the second cell operates in a second system bandwidth. Further, the wireless device may be configured to perform uplink activity for both the first RAT and the second RAT by TDM uplink data for the first RAT and uplink data for the second RAT if uplink activity is scheduled according to both the first RAT and the second RAT.
Abstract:
Apparatuses, systems, and methods to dynamically indicate preference for self-contained slots and slot duration by a user equipment device (UE) in communication with a base station (e.g., a gNB) using a 5G NR radio access technology. A UE may determine to send an indication to a gNB indicating a preference for self-contained slots and slot duration for downlink and/or uplink communications utilizing one or more of the physical downlink control channel (PDCCH), the physical downlink shared channel (PDSCH), and/or acknowledgement messaging (ACK/NACK) for downlink communications, and utilizing one or more of the physical uplink control channel (PUCCH), the PDCCH, and/or the physical uplink shared channel (PUSCH) for uplink communications. The configuration of self-contained slots and slot duration for uplink and/or downlink may be based on one or more of average packet size, average packet rate, traffic type and UE processing capabilities.
Abstract:
The present application relates to devices and components including apparatus, systems, and methods for canceling reference signal interference in dynamic spectrum sharing networks.