Abstract:
A metal enclosure has a surface region which is coated with cladding material using a laser cladding process. The metal enclosure can form at least a portion of an electronic device housing. All or part of one or more surfaces of the enclosure can be coated with cladding material. The coating of cladding material can be varied at selective regions of the enclosure to provide different structural properties at these regions. The coating of cladding material can be varied at selective regions to provide contrast in cosmetic appearance.
Abstract:
A textured enclosure component including two different types of surface features is disclosed. The two different types of surface features are differently sized. The combination of differently sized surface features provides both anti-glare and anti-reflective properties to the enclosure component.
Abstract:
The disclosure provides members formed from multiple layers as well as enclosures and electronic devices that include the members. The members include glass members formed from multiple layers of glass. In some cases, the members include a protruding feature provided over a camera assembly of the electronic device. The member may define one or more through-holes that extend through the protruding feature. The protruding feature may define a textured region that may be configured to provide a matte or glossy appearance.
Abstract:
Described herein is a feedstock comprising BMG. The feedstock has a surface with an average roughness of at least 200 microns. Also described herein is a feedstock comprising BMG. The feedstock, when supported on a support during a melting process of the feedstock, has a contact area between the feedstock and the support up to 50% of a total area of the support. These feedstocks can be made by molding ingots of BMG into a mole with surface patterns, enclosing one or more cores into a sheath with a roughened surface, chemical etching, laser ablating, machining, grinding, sandblasting, or shot peening. The feedstocks can be used as starting materials in an injection molding process.
Abstract:
A housing or enclosure for an electronic device is formed from a shell and chassis may positioned along an interior of the shell. The shell may be formed from a hard or cosmetic material and the chassis may be formed from a machinable material. The chassis may define one or more machined surfaces that are configured to receive or mount a component of the electronic device.
Abstract:
Various embodiments provide apparatus and methods for melting materials and for containing the molten materials within melt zone during melting. Exemplary apparatus may include a vessel configured to receive a material for melting therein; a load induction coil positioned adjacent to the vessel to melt the material therein; and a containment induction coil positioned in line with the load induction coil. The material in the vessel can be heated by operating the load induction coil at a first RF frequency to form a molten material. The containment induction coil can be operated at a second RF frequency to contain the molten material within the load induction coil. Once the desired temperature is achieved and maintained for the molten material, operation of the containment induction coil can be stopped and the molten material can be ejected from the vessel into a mold through an ejection path.
Abstract:
Described herein are methods of constructing a part having improved properties using metallic glass alloys, layer by layer. In accordance with certain aspects, a layer of metallic glass-forming powder is deposited to selected positions and then fused to a surface layer (i.e. layer below) by suitable methods such as laser heating or electron beam heating. The deposition and fusing are then repeated as need to construct the part, layer by layer. In certain embodiments, one or more sections or layers of non-metallic glass-forming material can be included as needed to form a composite final part. In certain aspects, the metallic glass-forming powder may be crystalized during depositing and fusing, or may be recrystallized during subsequent processing to provide selectively crystalized sections or layers, e.g., to impart desired functionality. In other aspects, non-metallic glass-forming materials may be deposited and fused at selected positions, e.g., to provide selective shear banding to impart improved ductile properties and plasticity. In yet other aspects, the metallic glass-forming powder or metallic glass material and non-metallic glass-forming material are deposited and fused to form a foam-like, bellow or similar structure, which is able to crumple under high stress to absorb energy under impact.
Abstract:
The disclosure relates to an audio device that includes a diaphragm having a graphene material, such as a graphene flake, that is incorporated into a base material. The audio device may form part of a speaker device, a microphone device, or a headphone device. The concentration of the graphene and/or a size of the graphene flakes may be varied throughout the diaphragm to define a stiff center portion and a flexible portion that surrounds the center portion.
Abstract:
Described herein is a feedstock comprising BMG. The feedstock has a surface with an average roughness of at least 200 microns. Also described herein is a feedstock comprising BMG. The feedstock, when supported on a support during a melting process of the feedstock, has a contact area between the feedstock and the support up to 50% of a total area of the support. These feedstocks can be made by molding ingots of BMG into a mole with surface patterns, enclosing one or more cores into a sheath with a roughened surface, chemical etching, laser ablating, machining, grinding, sandblasting, or shot peening. The feedstocks can be used as starting materials in an injection molding process.
Abstract:
Various embodiments provide apparatus and methods for melting and introducing alloy feedstock for molding by using a hollow branch having a constraint mechanism therein. In one embodiment, a hollow branch can extend upward from a cold chamber that is substantially horizontally configured. The hollow branch including a constraint mechanism can be capable of containing an alloy feedstock for melting into the molten alloy in the hollow branch and introducing the molten alloy to the cold chamber for molding.