Abstract:
Methods and apparatuses are presented to facilitate coexistence between multiple wireless communication protocols implemented by a wireless communication device, by dynamically adjusting priority between the two protocols. The wireless communication device may typically favor a first protocol (e.g. Bluetooth/BTLE), prioritizing resource requests by the first protocol. In certain use cases, the first protocol may demand high resource usage for an extended time, particularly for newer tracking and wearable devices, such as location tags, watches, headsets, etc. Such applications can disrupt existing use cases for a second protocol (e.g., Wi-Fi). Therefore, the wireless communication device may dynamically determine whether the second protocol is performing critical operations, such as latency-sensitive applications or high-performance operations. If so, the wireless communication device may allocate resources accordingly in real time, e.g., by reducing or limiting the resources assigned to the first protocol, to allow increased resources for the second protocol.
Abstract:
Embodiments relate to an integrated circuit of an electronic device that coordinates activities with another integrated circuit of the electronic device. The integrated circuit includes an interface circuit and a processor circuit. The interface circuit communicates over a multi-drop bus connected to multiple electronic components. The processor circuit receives an authorization request from the integrated circuit via the interface circuit and the multi-drop bus. The received authorization request relates to authorization to perform an activity on the other integrated circuit. In response to receiving the authorization request, the processor circuit determines whether the other integrated circuit is authorized to execute the activity. In response to determining that the other integrated circuit is authorized to execute the activity, the processor circuit sends, to the other integrated circuit over a configurable direct connection, an authorization signal authorizing the other integrated circuit to execute the activity.
Abstract:
An interface circuit in an electronic device (such as an access point) may request a channel status in order to specify a subset of one or more frequency sub-bands. During operation, the interface circuit may provide at least a frame to the recipient electronic device, where the frame requests the channel status for the one or more frequency sub-bands. Then, the electronic device may receive one or more measurement results from the recipient electronic device that specify the subset of the one or more frequency sub-bands (such as one or more RUs) that are not to be used when communicating with the recipient electronic device.
Abstract:
A mobile device receives an invitation to commence a media session. The invitation may be from a legitimate caller or from a spoofing caller. The mobile device checks parameters using templates to evaluate a consistency of the invitation with respect to a database in the mobile device. The templates include session protocol, network topology, routing, and social templates. Specific template data includes standardized protocol parameters, values from a database of the mobile device and phonebook entries of the mobile device. Examples of the parameters include capabilities, preconditions, vendor equipment identifiers, a hop counter value and originating network information. The originating network information may be obtained from the database by first querying an on-line database to determine a network identifier associated with caller identification information in the invitation. Then, the obtained carrier identifier is used as an index into a database to obtain template data characteristic of the identified originating network.
Abstract:
An interface circuit in an electronic device (such as an access point) may request a channel status in order to specify a subset of one or more frequency sub-bands. During operation, the interface circuit may provide at least a frame to the recipient electronic device, where the frame requests the channel status for the one or more frequency sub-bands. Then, the electronic device may receive one or more measurement results from the recipient electronic device that specify the subset of the one or more frequency sub-bands (such as one or more RUs) that are not to be used when communicating with the recipient electronic device.
Abstract:
Methods and apparatus for reduction of interference between a plurality of wireless interfaces. In one exemplary embodiment, a device having a first (e.g., Wi-Fi) interface and a second (e.g., Bluetooth) interface monitors interference between its interfaces. A reduction in transmit power of the Wi-Fi module causes a disproportionately larger reduction in undesirable interference experienced at the Bluetooth antennas. For example, when the Bluetooth interface detects interference levels above acceptable thresholds, the Wi-Fi interface adjusts operation of one or more of its transmit chains based on various conditions such as duty cycle, Received Signal Strength Indication (RSSI), etc. Various embodiments of the present invention provide simultaneous operation of WLAN and PAN interfaces, without requiring time division coexistence, by reducing power on a subset of interfering antennas.
Abstract:
An interface circuit in a computing device may communicate with user-interface devices using shared slots during time intervals. In particular, the computing device may transmit outgoing messages to the user-interface devices at a first predefined time during sequential time intervals when the user-interface devices transition from a sleep mode to a normal mode. In response, the computing device may receive incoming messages from one or more of the user-interface devices at a second predefined time following the first predefined time during the sequential time intervals. Then, the computing device may transmit a multicast message to the user-interface devices at a third predefined time during the sequential time intervals. In response to the given multicast message, one of the user-interface devices may communicate data to the computing device. Note that, in some instances, a multicast time slot may instead be used to communicate data to one of the user-interface devices.
Abstract:
A device may store a plurality of different coexistence profiles for different possible communication scenarios. The device may be initialized with a first one of the coexistence profiles, and may operate to dynamically switch to different ones of the coexistence profiles based on current conditions. Each coexistence profile may include a number of coexistence related parameters stored as a plurality of data structures. During device use, the device may dynamically select an appropriate coexistence profile based on the current communication conditions, such as Wi-Fi RSSI, Bluetooth RSSI, and/or the number of Wi-Fi and/or Bluetooth devices with which communication is currently occurring, among other possible factors. The coexistence profile is selected to provide the best possible Wi-Fi and/or Bluetooth output performance based on current conditions. The device may repeatedly dynamically select different coexistence profiles as conditions change, e.g., may select different coexistence profiles on a second or even millisecond basis.
Abstract:
Methods and apparatus for reduction of interference between a plurality of wireless interfaces. In one exemplary embodiment, a device having a first (e.g., Wi-Fi) interface and a second (e.g., Bluetooth) interface monitors interference between its interfaces. A reduction in transmit power of the Wi-Fi module causes a disproportionately larger reduction in undesirable interference experienced at the Bluetooth antennas. For example, when the Bluetooth interface detects interference levels above acceptable thresholds, the Wi-Fi interface adjusts operation of one or more of its transmit chains based on various conditions such as duty cycle, Received Signal Strength Indication (RSSI), etc. Various embodiments of the present invention provide simultaneous operation of WLAN and PAN interfaces, without requiring time division coexistence, by reducing power on a subset of interfering antennas.
Abstract:
Methods and apparatus for mitigation of radio interference between two or more wireless concurrently operating interfaces in a wireless device having an aggressive form factor. In one embodiment, the interfaces are used for different tasks (e.g., WLAN for data and PAN for human interface devices), and the device includes logic configured to evaluate the priority of the tasks and adjust the operation of one or more of the interfaces accordingly.