Abstract:
A capacitive sensor system including a sensing plate, an amplifier, and a switching circuit is described. The sensing plate is capacitively coupled to a body surface. A change in the electric potential on the body surface generates an electric field that induces change in the electric potential of the sensing plate. The sensing plate includes a sensing node positioned in the electric field for generating an input signal from the electric field. The sensing plate is not in contact with the body surface. The amplifier receives the input signal at the input port, amplifies the input signal and generates an output signal at the output port. The switching circuit is connected to the input port and a reference voltage. The switching circuit non-continuously closes a shunting path from the sensing node to the reference voltage to reset the voltage at the sensing node.
Abstract:
In one embodiment, the invention relates to a catalyst in powdered form comprising the oxides of copper, iron, aluminum and manganese wherein the atomic ratio of copper to iron is at least 1:1. In another embodiment, the invention relates to a process for preparing such hydrogenation catalysts which comprises the steps of(A) preparing a first aqueous solution containing at least one water-soluble copper salt, at least one water-soluble iron salt, and at least one water-soluble manganese salt;(B) preparing a second solution containing at least one water-soluble basic aluminum salt and at least one alkaline precipitating agent;(C) mixing the first and second solutions wherein an insoluble solid is formed;(D) recovering the soluble solid; and(E) calcining the recovered solid to form the desired catalyst.The invention also relates to a process for hydrogenating aldehydes, ketones, carboxylic acids and carboxylic acid esters.
Abstract:
A gas turbine engine has a forward rotor, a row of fan blades radially extending from the rotor, and a core turbine engine located rearwardly of the fan blades and rotor and coupled to the rotor for rotatably driving the rotor. An outer annular nacelle surrounds the rotor, fan blades and core engine. An inner annular splitter fairing is disposed rearwardly of the fan blades, surrounds the core engine, and is spaced radially inwardly from the nacelle so as to define therebetween a bypass air flow duct located outwardly from the core engine and rearwardly of the fan blades for producing thrust upon rotation of the rotor and fan blades. A hybrid shape spinner nose is attached about the rotor and projects forwardly therefrom within the nacelle and forwardly of the fan blades. The hybrid shape spinner nose has a forward substantially conical section spaced forwardly of the fan blades, a rearward substantially conical section projecting forwardly of and merging rearwardly with the fan blades, and a transition connecting the forward and rearward sections such that the spinner nose is provided with a compound, substantially conical configuration in which the slope of the forward substantially conical section is greater than the slope of an imaginary conical surface connecting a front end of the spinner nose and a leading edge of the annular splitter fairing, whereas the slope of the rearward substantially conical section is less than the slope of such imaginary conical surface.
Abstract:
In one embodiment, the invention relates to a catalyst in powdered form which comprises a major amount of the oxides of copper and zinc, and a minor amount of aluminum oxide wherein the pore volume of pores of said catalysts having a diameter between about 120 and about 1000 .ANG. is at least about 40% of the total pore volume. In another embodiment, the invention relates to a process for preparing hydrogenation catalysts comprising the oxides of copper, zinc and aluminum which comprises the steps of(A) preparing a first aqueous solution containing at least one water-soluble copper salt and at least one water-soluble zinc salt;(B) preparing a second solution containing at least one water-soluble basic aluminum salt and at least one alkaline precipitating agent;(C) mixing the first and second solutions whereby an insoluble solid is formed;(D) recovering the insoluble solid.The invention also relates to a process for hydrogenating aldehydes, ketones, carboxylic acids and carboxylic acid esters with catalysts of the type described. Catalysts of the invention are useful in both fixed bed and slurry phase hydrogenation reactions.
Abstract:
The present invention relates to methods of treating chronic skin disorders by externally applying to the skin compounds by the following formula ##STR1## and therapeutically acceptable salts, esters and amides thereof, wherein R.sub.1 through R.sub.6 and X are as hereinafter defined.