Abstract:
A wireless device, a method, and a computer program product in a wireless device are provided in which a scheduling control signal is received in peer-to-peer resources. In addition, whether to yield a data transmission is determined based on the received scheduling control signal. Furthermore, the data transmission is sent to a base station on the peer-to-peer resources upon determining not to yield the data transmission. A base station, a method, and a computer program product in a base station are also provided in which a scheduling control signal is received in peer-to-peer resources. In addition, whether to yield a data transmission is determined based on the received scheduling control signal. Furthermore, the data transmission is sent to a wireless device on the peer-to-peer resources upon determining not to yield the data transmission.
Abstract:
Various methods and apparatus are directed to collision detection and/or avoidance regarding peer to peer connection identifiers. A wireless communications device broadcasts a signal indicating its acquired connection identifier in one of two alternative blocks. A base station monitors peer to peer signaling in its coverage area and tracks the usage of peer to peer connection identifiers by pairs of devices. The base station detects when multiple pairs of devices are using the same peer to peer connection identifier. The base station provides assistance to the peer to peer network to avoid a collision or facilitate rapid collision detection by the peer to peer devices. In one approach the base station sends an instruction for a connection to switch its connection identifier. In another approach the base station sends a connection a message to bias its selection as to which of the two alternative blocks to use for transmission.
Abstract:
A method of operating a first wireless device includes receiving a grant from a base station for peer-to-peer communication with a second wireless device using time-frequency resources utilized by a third wireless device for WWAN communication with the base station. In addition, the method includes receiving a transmit power for the peer-to-peer communication with the grant. The transmit power is determined based on an interference that can be caused to transmissions received by the base station from the third wireless device. Furthermore, the method includes communicating with the second wireless device at a power less than or equal to the received transmit power using peer-to-peer communication on the time-frequency resources.
Abstract:
A wireless communications system supports both cellular communications and direct peer to peer communications. The cellular communications use FDD downlink and uplink bands for control and traffic signaling. An access point employs control over direct peer to peer communications. Peer to peer mode control signals from the access point are transmitted to wireless terminals using the FDD cellular downlink band. Peer to peer mode control signals from wireless terminals are transmitted to an access point using the FDD cellular uplink band. Peer to peer traffic signals between wireless terminals are communicated using a TDD band. In one embodiment, the access point communicates priority information to peer to peer network wireless terminals, and the wireless terminals make peer to peer traffic transmission decisions in a decentralized manner using the received priority information. In another embodiment, the access point directly schedules peer to peer traffic in the peer to peer network.
Abstract:
A method, an apparatus, and a computer program product are provided in which a peer discovery signal is received from a second apparatus. At least one of a path loss to a serving base station or a path loss to a neighboring base station is determined. Whether to relay the peer discovery signal is determined based on the at least one of the path loss to the serving base station or the path loss to the neighboring base station. The peer discovery signal is sent upon determining to relay the peer discovery signal.
Abstract:
Method and apparatus for an access terminal which makes handoff decisions between a number of potential alternative attachment points based on service level indicating metrics are described. The access terminal computes a service level indicating metric differently for a current connection than for a potential alternative connection. A service level indicating metric is a function of loading information and received signal strength. A selection may be made by selecting between attachment points by selecting the attachment point having the highest service level indicating metric from among a plurality of attachment points, one per possible carrier where the attachment point which is considered for a given carrier is the one having the best connection for the given carrier. The access terminal handoff decision approach provides handoff decisions which are nearly as optimal as those which can be achieved using a centralized control node but without the requirement for centralized handoff decisions.
Abstract:
A method of operating a wireless device includes determining an energy on each of a plurality of resources for broadcasting CIDs, sending information to a base station based on the determined energy for each of the CIDs, and receiving a CID from the base station. The received CID is one of the CIDs determined based on the information. A method of wireless communication includes receiving first information about a first plurality of CIDs from a first wireless device, receiving second information about a second plurality of CIDs from a second wireless device, comparing the first information and the second information to determine a subset of CIDs based on the first plurality of CIDs and the second plurality of CIDs, selecting a CID based on the subset of CIDs, and sending the selected CID to at least one of the first wireless device or the second wireless device.
Abstract:
A wireless communications system supports both cellular communications and direct peer to peer communications. The cellular communications use FDD downlink and uplink bands for control and traffic signaling. An access point employs control over direct peer to peer communications. Peer to peer mode control signals from the access point are transmitted to wireless terminals using the FDD cellular downlink band. Peer to peer mode control signals from wireless terminals are transmitted to an access point using the FDD cellular uplink band. Peer to peer traffic signals between wireless terminals are communicated using a TDD band. In one embodiment, the access point communicates priority information to peer to peer network wireless terminals, and the wireless terminals make peer to peer traffic transmission decisions in a decentralized manner using the received priority information. In another embodiment, the access point directly schedules peer to peer traffic in the peer to peer network.
Abstract:
A method of wireless communication includes determining peer-to-peer scheduling resources. The peer-to-peer scheduling resources are parallel in time to and multiplexed with non peer-to-peer resources. The peer-to-peer scheduling resources include a plurality of serial scheduling resource segments. Each of the serial scheduling resource segments provides contention resolution for a set of peer-to-peer links. In addition, the method includes communicating in one of the serial scheduling resource segments and/or the non peer-to-peer resources.
Abstract:
Base station assisted peer to peer discovery methods are described. A wireless terminal communicates peer discovery expression information to a base station and information identifying a peer discovery resource that it intends to use but which may also be used by other devices. The base station associates the peer discovery expression and peer discovery resource with an index value to be communicated on the peer discovery resource. The base station transmits the peer discovery expression and information associating the peer discovery expression with the peer discovery resource and the index value. The wireless terminal transmits the index value on the peer discovery resource. A wireless terminal receiving the index value determines the peer discovery expression being communicated using information from the base station. Use of different indexes allows multiple devices to use the same discovery resource.