Abstract:
A radio-frequency identification (RFID) and an electronic article surveillance (EAS) tag includes an RFID device and an EAS device. The RFID device may operate in a plurality of states including an activated state in which communication with a reader is enabled and a deactivated state in which communication with a reader is disabled. The EAS device may operate in a plurality of states including an activated state in which activation of an alarm is enabled and a deactivated state in which activation of an alarm is disable. The RFID device may be deactivated when the EAS device is deactivated. For example, the same piece of equipment that deactivates the EAS device also deactivates the RFID device at the same time. The RFID device may include an antenna, an RFID chip connected to the antenna for communicating with a reader, and an active element operatively disposed with respect to the antenna. The active element, which may include a conductive strip or lead, may have an activated state in which the antenna is enabled for communicating with a reader in a far field and a deactivated state in which the antenna is disabled from communicating with a reader in a far field. In addition, the EAS device may include a magnetic resonator and a bias magnet. When activated, the bias magnet may cause or affect the resonator to resonate and the active element to be in the activated state. Further, when deactivated, the bias magnet may cause the active element to be in the deactivated state.
Abstract:
A RFID device configured to drive a display element. The RFID device may have a reader capable of sending and receiving radio frequency signals and a RFID tag in communication with the RFID reader. The RFID tag may have an antenna, a chip having a radio frequency detector, a backscatter modulator, a logic block and a multiplexer. The RFID device may also have a display in communication with the multiplexer of the chip.
Abstract:
A radio-frequency identification (RFID) tag is provided that comprises an RFID transceiver configured to transmit and receive radio frequency (RF) signals, the RFID transceiver comprising an integrated circuit chip (IC) coupled to an antenna having an impedance, gain and directionality that in conjunction with the characteristics of the IC defines a first read range of the RFID tag. The RFID tag also comprises a releasable coupler configured to be releasably engagable with the RFID transceiver comprising a coupling material, the releasable coupler being configured such that when the releasable coupler is releasably engaged with the RFID transceiver, the coupling material altering at least one of the impedance, the gain and the directionality of the antenna to define a second read range of the RFID tag, wherein the second read range is greater than the first read range.
Abstract:
A distributed point of sale, electronic article surveillance, and product information system. The system can include a central database and at least one integrated POS/EAS/information terminal adapted to communicate with NFC-enabled devices, RFID and EAS tags, and the database, wherein, when a customer places an NFC-enabled device and a product having an RFID and EAS tag and proximate the terminal, the terminal facilitates a transaction for purchasing the product. The terminal can include a processor, an NFC transceiver, a UHF RFID reader, and a Bluetooth transceiver. The transaction for purchasing the product can be performed via the NFC-enabled device.
Abstract translation:分销销售点,电子商品监控和产品信息系统。 该系统可以包括中央数据库和至少一个适于与启用NFC的设备,RFID和EAS标签以及数据库通信的集成POS / EAS /信息终端,其中,当客户放置支持NFC的设备和产品 具有RFID和EAS标签并且靠近终端,终端便于用于购买产品的交易。 终端可以包括处理器,NFC收发器,UHF RFID读取器和蓝牙收发器。 购买产品的交易可以通过启用NFC的设备执行。
Abstract:
A dual mode detection device provides both radio frequency identification and electronic article surveillance functionality. The device includes a dual mode microchip including a logic circuit and a non-volatile memory, the dual mode microchip having an electronic article surveillance (EAS) capability and a radio frequency identification (RFID) capability. An antenna is operatively coupled to the microchip for operation of the RFID capability. A coil is operatively coupled to the microchip and a capacitor is integrated into the microchip such that the coil resonates at a specific frequency, wherein exceeding a breakdown voltage of the capacitor alters a state of a memory location in the non-volatile memory.
Abstract:
An antenna assembly is operative for receiving interrogating radiation at a variable frequency tag and generating a corresponding received signal, and for receiving a signature signal and radiating corresponding response radiation. A logic unit is operative for receiving the received signal and outputting the signature signal in response, the signature signal including a signature code for use in identifying the tag. A voltage controlled oscillator is operative for controlling a rate at which the signature code is output; and a power supply is operative for providing an electrical potential difference for energizing the tag. The voltage controlled oscillator is operable to output the signature code at a rate which is governed by the magnitude of the received signal.
Abstract:
A radio-frequency identification (RFID) tag is provided that comprises an RFID inlay having a read range. The RFID tag also comprises a facestock or substrate affixed to the RFID inlay. The RFID tag further comprises a radio frequency (RF) altering material affixed to the facestock or substrate that is configured to permanently reduce the read range of the RFID inlay.
Abstract:
A wireless communication device coupled to a wave antenna that provides greater increased durability and impedance matching. The wave antenna is a conductor that is bent in alternating sections to form peaks and valleys. The wireless communication device is coupled to the wave antenna to provide wireless communication with other communication devices, such as an interrogation reader. The wireless communication device and wave antenna may be placed on objects, goods, or other articles of manufacture that are subject to forces such that the wave antenna may be stretched or compressed during the manufacture and/or use of such object, good or article of manufacture. The wave antenna, because of its bent structure, is capable of stretching and compressing more easily than other structures, reducing the wireless communication device's susceptibility to damage or breaks that might render the wireless communication device coupled to the wave antenna unable to properly communicate information wirelessly.
Abstract:
A merchandise security kit includes a tag body, a first tack adapted to be removably attached to the tag body to form a first reusable hard tag that is limited to electronic article surveillance (EAS) capabilities, and a second tack adapted to be removably attached to the tag body to form a second reusable hard tag that is provided with both EAS and radio frequency identification (RFID) capabilities. The tag body comprises a security inlay that is disposed within a protective casing, the security inlay including an antenna and an EAS marker. The second tack comprises an enlarged head, a sharpened pin connected to the head and an integrated circuit (IC) chip embedded within the head. With the second tack attached to the tag body, the IC chip either conductively or reactively couples to the antenna in the tag body to provide the second hard tag with its RFID capabilities.
Abstract:
A radio-frequency identification (RFID) tag is provided that comprises an RFID transceiver configured to transmit and receive radio frequency (RF) signals, the RFID transceiver comprising an integrated circuit chip (IC) coupled to an antenna having an impedance, gain and directionality that in conjunction with the characteristics of the IC defines a first read range of the RFID tag. The RFID tag also comprises a releasable coupler configured to be releasably engagable with the RFID transceiver comprising a coupling material, the releasable coupler being configured such that when the releasable coupler is releasably engaged with the RFID transceiver, the coupling material altering at least one of the impedance, the gain and the directionality of the antenna to define a second read range of the RFID tag, wherein the second read range is greater than the first read range.