Abstract:
An improved method for forming a dynamic random access memory (DRAM) capacitor includes forming a first dielectric layer on a substrate. The first dielectric layer is patterned and anisotropically etched to form a trench that defines a storage node area. A doped polysilicon layer is formed on the first dielectric layer and filling the trench. Next, a nitride layer is formed on the doped polysilicon layer and a dielectric stack is then formed over the nitride layer. The dielectric stack includes alternating layers of a second dielectric material and a third dielectric material, each dielectric material having a different etch rate. The dielectric stack is patterned and anisotropically etched to form a laminated pillar. The pillar is then isotropically etched to form recessed cavities in a sidewall of the pillar. Portions of the nitride layer are then removed using the pillar as a mask, and a doped polysilicon layer is conformally formed over the pillar so as to fill the recessed cavities. Afterwards, portions of the doped polysilicon layer are removed to expose the upper surface of the pillar, and the pillar is removed while leaving the residual doped polysilicon layer intact, thereby forming an electrode of the capacitor of the DRAM cell.
Abstract:
A method for manufacturing a double walled cylindrical stacked capacitor for a DRAM using only one photo mask is provided. An insulating layer having a contact opening is formed over a transistor. A first conductive layer is then formed over the insulating layer. The first conductive layer is patterned forming a central spine over the contact opening and portions of the first conductive layer are left covering the insulation layer. Dielectric spacers are formed on the sidewall of the central spine. The remaining portions of the first conductive layer over the first insulating layer are removed and upper portions of the central spine are removed forming a conductive base. Inner and outer conductive walls are formed on the sidewalls of the dielectric spacers thereby forming a double walled bottom electrode. The dielectric spacers are removed. A capacitor dielectric layer and a top electrode are formed over the bottom electrode forming the capacitor. The invention uses sidewall spacers and selective etching techniques to forms a low cost, simple to manufacture, high capacitance capacitor and DRAM cell.
Abstract:
A method of creating an STC structure, used for high density, DRAM designs, has been developed. The process consists of creating a grated top surface topography for a polysilicon storage node electrode. The grated top surface topography is obtained by using a composite spot structure, of silicon oxide on small diameter, HSG polysilicon spots, as a mask for an anisotropic dry etch procedure, used to define lower features in an underlying polysilicon layer. The raised features of the grated top surface topography of the polysilicon storage node electrode, is comprised of the masking, small diameter, HSG polysilicon spots, on regions of the unetched polysilicon layer.
Abstract:
A method, and resultant structure, is described for fabricating a DRAM trench capacitor with a single pillar recessed below the level of the top surface of the silicon substrate in which it is formed. First and second insulating layers are formed over the silicon substrate, and patterned to form an opening to the silicon substrate. A portion of the silicon substrate is removed in the region defined by the opening, whereby a first trench is formed. Sidewall spacers are formed along the sides of the first trench from a third insulating layer. A first pillar is formed after depositing a first conductive layer between the sidewall spacers and over the trench and removing the first conductive layer except within the first trench. The sidewall spacers are removed. A portion of the silicon substrate in the first trench is removed that is not vertically masked by the pillar, and simultaneously a portion top of the pillar is removed, whereby a second trench and second pillar are formed at a greater depth in the silicon substrate. The remainder of the second insulating layer is also removed. A capacitor dielectric is formed in the second trench over the second pillar. A second conducting layer is formed over the dielectric layer and removed in the region outside of the trench to form the top capacitor electrode.
Abstract:
A method for manufacturing an array of stacked capacitors with increased capacitance on a dynamic random access memory (DRAM) device was achieved. The invention uses a thermal oxidation and anisotropic plasma etch to form sidewall spacers in a recess or trench in a first polysilicon layer over the capacitor node contacts to the FETs. The recesses within the sidewall spacers are then filled with a second polysilicon layer and chem/mech polished back to form studs. The sidewall spacers are then selectively removed by a wet etch and a patterned second photoresist layer is used to pattern the first polysilicon layer into an array of capacitor bottom electrodes with vertical portions that increase the surface area. An interelectrode dielectric layer is formed on the bottom electrodes and a third polysilicon layer is deposited and patterned to form the top electrodes and to complete the array of stacked capacitors on the DRAM device.
Abstract:
A method of creating an STC structure, used for high density, DRAM designs, has been developed. The process consists of creating a lower, or storage node electrode, for the STC structure, consisting of a flat, polysilicon plug, contacting an underlying transistor region, and of an upper polysilicon shape, comprised of polysilicon columns, extending between about 2500 to 6000 Angstroms, above the top surface of the flat, polysilicon plug. The flat, polysilicon plug is formed via creation of a capacitor contact hole, in an insulator layer, followed by polysilicon deposition, and RIE etch back, creating the flat, polysilicon plug, recessed in a lower portion of the capacitor contact hole. Another polysilicon deposition, and anisotropic RIE procedure, results in the formation of polysilicon columns, on the sides of the upper portion of the capacitor contact hole. Removal of insulator layers expose the storage node electrode, comprised of polysilicon columns, overlying, and extending above, the underlying flat, polysilicon plug.
Abstract:
A method for making an array of DRAM cells having increased capacitance was achieved. The method forms a planar insulating layer in which are etched capacitor node contact openings to each FET in an array of cells. A first polysilicon layer is deposited to fill the node contact openings and provide a polysilicon planar surface on the insulating layer. A multilayer of alternate layers of a traditional LPCVD silicon oxide and O.sub.3 /TEOS silicon oxide is deposited and patterned having openings aligned over the capacitor node contacts where the capacitors are required. The multilayer is then etched in HF to partially etch and recess the faster etching O.sub.3 /TEOS oxide, forming grooves in the sidewalls of the multilayer structure. A second polysilicon layer is then conformally deposited, etched back and the exposed multilayer structure is selectively removed in HF to leave free-standing bottom electrodes having sidewall spacers and a center pillar that replicate the grooves in the multilayer, thereby providing increased surface area. An interelectrode dielectric layer is formed on the bottom electrodes and a third polysilicon layer is deposited and patterned to form the top electrodes and to complete the array of stacked capacitors on the DRAM device.
Abstract:
A method of forming a capacitor on a semiconductor substrate includes forming a first oxide layer on the semiconductor substrate. A contact hole is then formed in the first oxide layer. A first conductive layer is formed on the first oxide layer and in the contact hole. Then the first conductive layer is etched back to the surface of said first oxide layer. A trench is formed in the first dielectric layer aligned with the first conductive layer, with the upper portion of the first conductive layer extending upwards from the bottom surface of the trench. A second conductive layer is conformally deposited on the first conductive layer and the first oxide layer. A second oxide layer is formed on the second conductive layer, filling the trench. A chemical mechanical polishing (CMP) process is then performed to remove the upper portions of the first and second oxide layers and the first and second conductive layers. The lower portions of the first and second oxide layers are removed by using a highly selective etching process. The resulting polysilicon structure serves as a bottom storage node of the capacitor. A dielectric film is formed on the first conductive layer and the second conductive layer. A third conductive layer is formed over the dielectric film to form the top storage node of the capacitor.
Abstract:
A method for forming a DRAM capacitor using HSG-Si includes forming a dielectric layer over a substrate. A portion of the dielectric layer is removed to expose a contact area on the substrate. A polysilicon layer is then formed over the dielectric layer and in the first trench. Then, a hemispherical-grained silicon (HSG-Si) layer is formed on the polysilicon layer using an initial phase HSG-Si process, thereby forming a large number of silicon grains on the polysilicon layer. Next, nitrogen atoms are implanted into the polysilicon layer using the HSG-Si layer as a mask to form nitrogen regions in the polysilicon layer. The HSG-Si layer is then removed and the polysilicon layer is thermally oxidized. The nitrogen regions function as an anti-oxidation mask so that polysilicon-oxide regions are formed between the nitrogen regions in the polysilicon layer. Afterwards, an etching process is performed using the polysilicon-oxide regions as a mask so that the nitrogen regions and portions of the polysilicon layer beneath the nitrogen regions are removed. This etching step forms second trenches in the polysilicon layer between the polysilicon-oxide regions, which are subsequently removed. After removing the polysilicon-oxide regions, the polysilicon layer is patterned and etched to form a bottom electrode of the capacitor of the dynamic random access memory. The capacitor dielectric and the top electrode of the capacitor are then formed using conventional methods.
Abstract:
A method of creating an STC structure, used for high density, DRAM designs, has been developed. The process consists of creating a saw-toothed topography for the top surface of a polysilicon storage node electrode. The saw-toothed topography is obtained by placing intrinsic HSG polysilicon spots on an underlying doped polysilicon layer. An anisotropic RIE procedure, using SF.sub.6, as an etchant, removes doped polysilicon at a faster rate then the removal rate of the masking intrinsic HSG polysilicon spots, resulting in a saw-toothed topography in the polysilicon storage node electrode, comprised of raised features of HSG polysilicon spots, on unetched doped polysilicon, and lower features of etched, doped polysilicon. The saw-toothed topography, increases the surface area of the polysilicon storage node electrode, thus furnishing capacitance increases.