Abstract:
Long term evolution (LTE)/LTE-Advanced (LTE-A) deployments with unlicensed spectrum leverage more efficient LTE communication aspects over unlicensed spectrum, such as over WIFI radio access technology. In order to accommodate such communications, various downlink procedures may be modified in order to handle communications between licensed and unlicensed spectrum with LTE/LTE-A deployments with unlicensed spectrum.
Abstract:
Long term evolution (LTE)/LTE-Advanced (LTE-A) deployments with unlicensed spectrum leverage more efficient LTE communication aspects over unlicensed spectrum, such as over WIFI radio access technology. In order to accommodate such communications, various uplink procedures may be modified in order to handle communications between licensed and unlicensed spectrum with LTE/LTE-A deployments with unlicensed spectrum.
Abstract:
Wireless communication systems and methods are described where communication is established with a user device at a low frequency. Coarse channel information, such as pathloss, power delay profile, and multipath direction information, regarding the communication between a wireless network device and the user device at the low frequency may then be used to establish communication with the user device at a high frequency.
Abstract:
Methods, systems, and apparatuses are described for wireless communications, in which transmission of common information to two or more receivers over unlicensed spectrum may be provided. The common information may be transmitted over a number (e.g., a set) of different carrier frequencies of the unlicensed spectrum. A staggering pattern may be employed to transmit all or a part of the common information across each of the carrier frequencies in the set of carrier frequencies. The detection of the information on one of the carrier frequencies may provide information that may be used to derive the staggering pattern. The duration of the common information transmission on each of the carrier frequencies may be selected such that a clear channel assessment (CCA) to determine availability of the unlicensed spectrum is not required.
Abstract:
Techniques for estimating and reporting channel quality indicator (CQI) are disclosed. Neighboring base stations may cause strong interference to one another and may be allocated different resources, e.g., different subframes. A UE may observe different levels of interference on different resources. In an aspect, the UE may determine a CQI for resources allocated to a base station and having reduced or no interference from at least one interfering base station. In another aspect, the UE may determine multiple CQI for resources of different types and associated with different interference levels. For example, the UE may determine a first CQI based on at least one first subframe allocated to the base station and having reduced or no interference from the interfering base station(s). The UE may determine a second CQI based on at least one second subframe allocated to the interfering base station(s).
Abstract:
A method by a small cell for wireless communication may include receiving, by the small cell, a wireless Multicast-Broadcast Single Frequency Network (MBSFN) signal from a macro cell, wherein the small cell is characterized by having a transmit power substantially less than each macro cell in a wireless communication network with the small cell. The method may further include obtaining, by the small cell, a measurement value of the MBSFN signal within a radio range of the small cell. The method may further include acting, by the small cell, based on the measurement value. The small cell may be, or may include, at least one of a pico cell, a femto cell, or a home evolved Node B (HeNB).
Abstract:
A method, a computer program product, and an apparatus are provided. The apparatus may be a UE. The UE receives an information block from a first base station while camped on a second base station. In an aspect, the information block includes an indication of a random access configuration for performing at least a part of a random access procedure. The UE determines to reselect to the first base station from the second base station. The UE performs at least a part of a random access procedure with the first base station based on the indicated random access configuration to reselect from a second base station to the first base station.
Abstract:
Enhanced sounding reference signal (SRS) transmissions for multiple input, multiple output (MIMO) operation are disclosed in which a user equipment (UE) detects an observed interference level for each receiver chain of the UE. In response to an imbalance, the UE precodes a SRS targeting downlink operation to indicate the imbalance. The UE then transmits the precoded SRS. In alternative aspects, the precoded SRS vector may be determined by an evolved nodeB (eNB). In such aspects, the eNB determines the precoded SRS vector targeting downlink operations for the served UEs, wherein the determined precoded SRS vector includes determining the precoded SRS vector on a per UE basis, enabling the precoded SRS vector for either one or both of frequency division duplex (FDD) systems and time division duplex (TDD) systems, or enabling the precoded SRS vector for aperiodic SRS only. The eNB then transmits the determined precoded SRS vector to the UE.
Abstract:
The described aspects include methods and apparatus providing MTC in a wireless network. In an aspect, a narrow bandwidth within a wide system bandwidth is allocated for communicating data related to MTC. MTC control data generated for communicating over one or more MTC control channels for an MTC UE within the narrow bandwidth is transmitted over the one or more MTC control channels. The one or more MTC channels are multiplexed with one or more legacy channels over the wide system bandwidth. Other aspects are provided for transmission mode and content of the MTC control data or other MTC data.
Abstract:
A method for mitigating interference in a wireless network includes an eNodeB and/or a UE identifying interference. The eNodeB may identify the interfering TDD configurations based on a downlink signal of a neighboring eNodeB received during an uplink timeslot for a UE associated with the eNodeB. Likewise, the UE may identify an interfering UE based on an uplink signal received during a downlink timeslot for an eNodeB associated with the UE. The eNodeB performs interference management based at least in part on the identified interference.