Abstract:
A working substance pairing comprising a working substance and an ionic liquid, its use in absorption heat pumps, absorption refrigeration machines and heat transformers and also corresponding apparatuses.
Abstract:
An aqueous heat treatment liquid composition exhibiting a favorable rust resistance with a high cooling capability and a high uneven-cooling resistance is provided. The aqueous heat treatment liquid composition contains a hyperbranched polyglycerol. A mass average absolute molecular weight of the aqueous heat treatment liquid composition is preferably in a range of 5,000 to 500,000. When the aqueous heat treatment liquid composition is used for quenching of a metallic component, the aqueous heat treatment liquid composition can exhibit a favorable rust resistance with a high cooling capability and a high uneven-cooling resistance.
Abstract:
A working medium for heat cycle includes 1,1-dichloro-2,3,3,3-tetrafluoropropene, and a hydrofluorocarbon. A content of the hydrofluorocarbon is from 1 to 60 mass % in the working medium for heat cycle. The working medium for heat cycle preferably further includes a hydrocarbon. The hydrofluorocarbon is preferably at least one of difluoromethane, difluoroethane, trifluoroethane, tetrafluoroethane, pentafluoroethane, pentafluoropropane, hexafluoropropane, heptafluoropropane, pentafluorobutane or heptafluorocyclopentane. A heat apparatus includes the working medium for heat cycle.
Abstract:
A method of proportionally mixing two fluids is provided. The method includes introducing a first fluid stream, introducing a second fluid stream, wherein the flow rate of the second stream is modulated by a valve, thereby producing a modulated stream, combining the first fluid stream and the second fluid stream, thereby forming a compounded fluid stream, introducing said compounded fluid stream into a fluid containment region, wherein a vapor fraction and a liquid fraction are formed, determining the composition of the vapor fraction, comparing the composition of the vapor fraction with a predetermined composition to determine a composition error, and modulating the valve to reduce the composition error to a predetermined error.
Abstract:
A compacted block of material constructed of one or more units consisting of matter comprising an ammonia-saturated material capable of reversibly desorbing and ad- or absorbing ammonia surrounded by a gas-permeable, flexible material having a thermal conductivity of at least five times the thermal conductivity of said ammonia-saturated material at −70° C. to 250° C. and methods for producing the same are described.
Abstract:
A heat transfer fluid emulsion includes a heat transfer fluid, and liquid droplets dispersed within the heat transfer fluid, where the liquid droplets are substantially immiscible with respect to the heat transfer fluid and have dimensions that are no greater than about 100 nanometers. In addition, the thermal conductivity of the heat transfer fluid emulsion is greater than the thermal conductivity of the heat transfer fluid.
Abstract:
The invention relates to a heat-transporting fluid and to the use thereof. The heat-transporting fluid of the invention is formed of an aqueous colloidal sol including water and up to 58.8 wt %, relative to the total fluid weight, in a-Al2O3 particles, the thickness of which is the smallest dimension and less than or equal to 30 nm 90% to 95% of said a-Al2O3 particles have a size less than or equal to 210 nm, among which 50% have a size less than or equal to 160 nm. The invention is of use in the field of cooling, in particular nuclear reactor backup cooling.
Abstract translation:本发明涉及一种热输送流体及其用途。 本发明的热输送流体由包含水的胶体溶胶形成,相对于总流体重量高达58.8wt%的a-Al 2 O 3颗粒,其厚度为最小尺寸且小于或等于 至30nm,90%至95%的所述a-Al 2 O 3颗粒具有小于或等于210nm的尺寸,其中50%具有小于或等于160nm的尺寸。 本发明在冷却领域,特别是核反应堆备用冷却领域中有用。
Abstract:
Compositions having a mixture of functional perfume components are provided. In one embodiment, the functional perfume components comprise iso-nonyl acetate, dihydro myrcenol, linalool, and benzyl acetate. In one embodiment, the functional perfume component may be present in an amount from about 75% to about 100%, by weight of said mixture, wherein said composition is substantially free of a VOC.
Abstract:
The present invention is related to heat transfer materials including nano-scale boron nitride platelets having an aspect ratio ranging from about 10:1 to about 1000:1. The present invention also provides a method of removing heat from an object by directly or indirectly contacting the object with the heat transfer materials.