Abstract:
A detector assembly and methods including a magnetoresistive sensor capable of detecting anomalies in the wall of a casing string disposed in a wellbore. Examples of anomalies include gaps between casings such as due to casing joints, air gaps in casing threads such as due to flush casing joints, enlarged casing wall thickness such as due to external casing collars, damaged casing, perforations, and other discontinuities or deformities in the casing. The detector assembly and methods detect perturbations in the earth's magnetic field caused by the anomalies. The detector assembly generates essentially no magnetic or electromagnetic field so that other downhole instrumentation is not affected by its presence.
Abstract:
A method and system for performing in-line measurement of stresses in pipeline walls by continuous Barkhausen method comprises an inspection pig including permanent or DC electromagnets for generating a magnetic field that moves with the inspection pig through a pipeline, inductive or other types of magnetic field sensors for reading Barkhausen noise signals generated by the moving magnetic field, and associated instrumentation for amplifying, filtering, detecting and storing the Barkhausen noise signals. The size of the sensors may be selected to match the size of defects being investigated. By comparing trending data over time to determine changes in Barkhausen noise levels, greater detection sensitivity may be achieved. The method may be particularly advantageous for use in inspection pigs that also use magnetic flux leakage to determine pipeline defects, since the magnetic flux leakage method also use permanent or DC electromagnets.
Abstract:
An eddy current inspection apparatus includes a holder for a specimen, a holder for an eddy current probe, and an eddy current instrument operatively joined thereto. The probe holder includes carriages for translating the probe along first and second axes. The probe holder is selectively moved to align the probe with an internal channel of the specimen for sliding movement therealong to conduct eddy current inspection thereof.
Abstract:
A metal detector (1) used for identifying contaminants in products. The detector (1) includes an oscillator coil (10) that may be formed as two series wound coils (34, 35) having relatively smaller dimensions or as two parallel wound coils (29, 30) having relatively larger dimensions. A pair of input coils (13, 14) is located adjacent to the oscillator coil (10). A first signal (8) is generated by the first input coil (13) in response to the presence of a metallic object, while a second signal (24) is generated by the second input coil (14) in response to the presence of a metallic object. By measuring the ratio of the first signal (8) to the second signal (24) the physical location of a metal object within the metal detector cavity (7) can be determined.
Abstract:
Described are methods for pressurizing elastic support structures or balloons in sensor probes used for the inspection of components having areas of limited access. When inflated, the balloons press flexible sensors against the surface of the material under test. When deflated, the balloons permit easier insertion of the probes into the component and reduce the mechanical stresses on the sensors, thereby extending the sensor lifetime. By sequentially partially inserting the sensor into a limited access area from either side of the limited access area and scanning in opposite directions, the entire surface of the test material can be inspected.
Abstract:
A method is disclosed for locating a speed sensitive ground condition in a field winding of an electromagnetic synchronous machine having a rotor and an excitation circuit, said method including: sensing a magnetic flux generated by the field winding, while accelerating the rotor and activating the excitation circuit; detecting a cyclical aberration in the magnetic flux occurring during revolution of the rotor, and determining a position in the field winding corresponding to the cyclical aberration and identifying that position as a location of the speed sensitive ground condition.
Abstract:
This invention relates to the method and apparatus for indicating roller wear in a media handling device. Such structures of this type, generally, employ the use of variable inductance to determine roller wear. The media transport roller has a non-conductive surface with a conductive core. Located just above the conductive core is a rod containing a power coil that is driven by AC excitation and a pick-up coil. The pick-up coil is connected to circuitry that measures the inductance. As the media transport roller wears, the conductive core moves closer to an inductive pick-up unit. The measured output voltage from the pick-up unit depends upon the distance between the core and the pick-up unit. This inductance change can then be correlated to media transport roller wear and relayed to the user through the use of an LED or other similar types of numerical/graphical displays.
Abstract:
Methods are described for the use of conformable eddy-current sensors and sensor arrays for characterizing residual stresses and applied loads in materials. In addition, for magnetizable materials such as steels, these methods can be used to determine carbide content and to inspect for grinding burn damage. The sensor arrays can be mounted inside or scanned across the inner surface of test articles and hollow fasteners to monitor stress distributions. A technique for placing eddy-current coils around magnetizable fasteners for load distribution monitoring is also disclosed.
Abstract:
A detector for magnetizable materials operates remotely to determine a amplitude and phase modification of an exciting magnetic field caused by the magnetizable materials. These amplitude and phase measurements are used to create a phase-amplitude trajectory in phase amplitude space, which may be finely divided to distinguish among a number of different types of components.
Abstract:
A sensor for detecting defects in a component includes an electric coil fed with a varying electrical current to create a varying magnetic field penetrating at least partly into the component under test, and a defect detector including a magnetoresistor. The above components are accommodated in a protective housing having a detection face disposed near and parallel to a surface of the component under test. The coil has its axis null perpendicular to the detection face and the magnetoresistor is in the vicinity of the detection face. The magnetoresistor is a giant magnetoresistor and is disposed so that its sensitivity axis null1 sensitive to variations in a magnetic field is parallel to the detection face of the housing. The sensor further includes a first permanent magnet disposed so that it magnetically biases the magnetoresistor in the direction of its sensitive axis null1 to a value such that the operating point is a point on a curve, representing the output signal of the magnetoresistor as a function of the value of the component of the magnetic field in the direction of the sensitive axis, which is situated in the vicinity of the middle of a substantially rectilinear portion of the curve.