Abstract:
An offshore, deep-water crane including a support structure, a lifting arm secured to the support structure and extending therefrom, and at least one lifting rope extending from the support structure towards an end of the lifting arm remote from the support structure is disclosed. The lifting rope has a specific gravity less than 3 and a traction winch for moving the at least one lifting rope from the support structure along the arm and vice versa.
Abstract:
The disclosed invention is utilized for mounting a wind turbine and blade assembly on the upper end of a wind turbine tower. The invention generally includes a frame or truss that is pivotally secured to the top bay assembly of the tower. A transverse beam is connected to the frame or truss and extends fore of the tower when the frame or truss is in a first position and generally above the tower when in a second position. When in the first position, a wind turbine or blade assembly can be hoisted to the top of the tower. The wind turbine or blade assembly is then moved into position for mounting to the tower as the frame or truss is pivoted to a second position. When the turbine and blade assembly are secured to the tower, the frame or truss is disconnected from the tower and lowered to the ground.
Abstract:
A lift crane includes a carbody; ground engaging members elevating the carbody off the ground; a rotating bed rotatably connected to the carbody; a boom pivotally mounted at a first end to the rotating bed with a load hoist line extending adjacent a second end of the boom; a boom hoist mechanism that can be used to change the angle of the boom relative to the rotating bed during crane operation; and a boom raising assist structure connected to the boom. The boom raising assist structure preferably includes at least one ground engaging member in contact with the ground; and a boom elevating member extending between the assist structure ground engaging member and the boom. The boom elevating member supports at least a part of the weight of the boom.A method of setting up a lift crane includes a) attaching the first end of the boom to the rotating bed and constructing the boom, with the boom extending out from the rotating bed parallel to the ground and being supported at multiple points by the ground; b) positioning the boom raising assist structure between the ground and the boom, c) using the boom raising assist structure and the boom hoist mechanism together to pivot the boom about its connection to the rotating bed, thus raising the boom from a first position where the boom is supported by the ground to a second position where the boom is raised to a first angle compared to the surface of the ground providing an adequate boom reserve; and d) using the boom hoist mechanism to raise the boom to a second angle steeper than the first angle, where the boom raising assist structure is no longer in contact with the ground.
Abstract:
A control system for a lifting device and a lifting device comprising the same are disclosed. The control system includes a control unit comprising a processor with a memory communicatively coupled to the processor and having computer readable and executable instructions. A battery is electrically coupled to the control unit in addition to at least one indicator. The processor executes the computer readable and executable instructions to: determine an operating characteristic of the lifting device and an operating time of the lifting device as the lifting device is actuated; determine an accumulated load-time parameter for the lifting device based on the operating characteristic and the operating time; store the accumulated load-time parameter in the memory of the lift control system; compare the accumulated load-time parameter to a service constant; and provide an indication the indicator that a lift structural component requires service based on the comparison.
Abstract:
The invention relates to a locking system for a telescopic crane jib, in particular for a mobile crane, in which a lock is established between a telescoping cylinder (10, 20) and a telescopic part (1-4) by means of a locking unit (21) in order to extract and retract the telescopic parts, and the locking unit (21) is disposed on the telescoping cylinder (10, 20) in such a way that it can be moved longitudinally.
Abstract:
A double-arm working machine has an upper swing structure, an operator cabin, left swing post and right swing post provided in front of the upper swing structure, and a left work front A and right work front B provided on the left swing post and the right swing post, respectively, such that the work fronts A, B each sway vertically. An interference prevention controller generates an output signal to swing the swing posts 7a, 7b pursuant to a differential angle between the left and right work fronts A, B and to a command signal from an operating device. A differential angle range in which the left and right work fronts A, B are likely to come into contact with each other is defined as an interference danger area (N), and an assigned differential-angle range contiguous to the interference danger area is defined as a semi-interference danger area.
Abstract:
In a boom 15 for a working machine 10 attached to an upper rotational body 30 supported on a center of an upper portion of a crawler-type traveling device 40 to be transversely rotatable, the boom 15 includes, as portions cast by integral molding, a boom support point part 16, a boom cylinder rod support point part 18, and an arm support point part 19, and is configured so that the boom support point part 16 is connected to the boom cylinder rod support point part 18 by a general-purpose first rectangular pipe 61, and so that the boom cylinder rod support point part 18 is connected to the arm support point part 19 by a general-purpose second rectangular pipe 62.
Abstract:
A foldable portable hoist system includes a foldable portable hoist assembly and a mounting base. The foldable portable hoist assembly includes a substantially vertical support, an upper support arm, and a diagonal brace assembly. Hinged attachment of slidable collars on either end of the diagonal brace enables the foldable portable hoist assembly to be folded up for ease of transport and storage.
Abstract:
A cover for a roof gutter includes a unitary cover panel received by a plurality of C-clips that are attached to a portion of the roof gutter. The unitary cover panel includes a curved front lip positioned adjacent the roof gutter and an opposite roof-side edge to fit beneath shingles of the roof. The unitary cover panel includes four rows of oblong water siphon slots that are positioned between the roof-side edge and the curved lip. Each water siphon slot includes an opening for water to flow through into the gutter and a depending lip formed to extend below a gutter-facing lower surface of the unitary cover panel wherein the depending lip has a convex upper surface to direct water into the gutter.
Abstract:
A crane-excavator apparatus and method is provided. More particularly, the present invention relates to a mobile apparatus adaptable for use as a crane and as an excavator, and an associated method. The crane includes a lower crawler adapted for use with an excavator, an upper body adapted for use with an excavator, a boom adapted to engage a crane body, and an adapter for engaging a receptacle of the excavator upper body. Typically, the receptacle would accept an excavator boom. The adaptor and the receptacle are fixedly secured together such that the adaptor defines a connector for receiving the crane boom in the same manner as the crane boom would be accepted by a crane body for providing a range of boom angles comparable to the range of boom angles available to the boom connected to the crane body. The method for adapting an excavator for use as a crane is provided. Typically, the excavator includes a lower crawler, an upper body and a receptacle secured to the upper body for receiving an excavation boom associated with an excavation implement. A crane boom associated with a crane implement is also utilized in the method. The method starts with disengaging, if connected, the excavator boom from the receptacle. Then, the adaptor is engaged with the receptacle secured to the upper excavator body. The adaptor defines a connector for receiving the crane boom in the same manner as the crane boom would be accepted by a crane body, in other words, providing a range of boom angles comparable to the range of boom angles available to the boom connected to the crane body. The crane boom is engaged with the connector.