Abstract:
The present invention discloses a portable, reliable, automated and simple device using Spectral Fluorescence Signature technology (SFS) for fast and accurate drug detection, quantification and data storage. The present also discloses a method for using Spectral Fluorescence Signature technology (SFS) for fast and accurate drug detection, quantification and data storage. Such device and method needing not highly skilled personnel or specific background to run the tests.
Abstract:
The invention relates to providing analysis services to a plurality of customers using a plurality of data acquisition devices connected to a central processor, by way of a communication link, which is loaded with at least one calibration model configured to generate a predicted value of property of interest from data acquired from a pluraity of samples using the data acquisition devices wherein the analysis services include transmitting the predicted value of a property of interest to a customer from which analysis services is requested.
Abstract:
A compact analyzer for dry biochemical analysis of blood samples, integrating onto a common chassis (11): a measuring chamber (20) adapted to receive a disposable rotor (13) including microtanks (13A, 13B) containing dry reagents, a digital dilution module (21) of fixed or variable ratio defined as a function of the species of the sample to be analyzed, a sample centrifuging module (12) adapted, inside the measuring chamber, to centrifuge the rotor and position it angularly, an optical module adapted to apply beams of light to microtanks of the rotor, this optical module including a flash-lamp type light source (14) and a reference light sensor (16), an electronic processing and control system (23, 24, 25) including an external memory reader (26) adapted to read a portable external memory (27) containing at least information characteristic of at least the disposable rotor in use.
Abstract:
The invention concerns a gas analyzer comprising: a measuring volume (2), a radiation source (1) for providing a beam to pass said measuring volume; a heat sink (16) for said radiation source; at least one thermal detector (3) having a hot junction within a support structure and receiving the radiation and a cold junction for reference within the same support structure and protected from said radiation; at least one optical bandpass filter (9) between said hot junction and said radiation source; and a thermal mass (11), which is formed of a material having high thermal conductance. The thermal mass has a cavity with a bottom step (34) and a rim (32), and a first length therebetween. The support structure has a frontal edge (35) and a base plate lip (33), and a second length therebetween. There is a radial gap between the thermal mass and the support structure. Press means urge said support structure in the cavity, whereupon a more efficient thermal contact is either between said frontal edge and said bottom step, or between said base plate lip and said rim. A first thermal barrier (17) is between the heat sink and the thermal mass, and a second thermal barrier (22) surrounds the thermal mass. A shield (19) formed of a material having high thermal conductance covers said second thermal barrier and is in thermal contact with said heat sink.
Abstract:
An apparatus, program product and method incorporate an extensible modular communication executive for use integrating one or more electronic devices with one another with reduced customization overhead. A modular architecture is used to facilitate message-based communications in such a manner that queuing strategies, business rules and the like may be accommodated within a message-based environment in a reliable and efficient manner. Through the use of a modular architecture, application-specific software components can be assembled together to readily adapt a generic message-based system for use in a specific application. Moreover, intelligent pre-validation of messages may be implemented in such a modular architecture to permit a business rule-independent messaging infrastructure to be readily adapted to support specific business rule requirements for a particular application.