Abstract:
A measurement of standard light is performed during radiation measurement for gain correction and offset correction of radiation measurement apparatus. The standard light emitted by a LED falls on a PMT. An output signal of a preamplifier corresponding to the PMT is entered into a system controller after being subjected to predetermined analog signal processing. The system controller calculates a gain correction value and an offset correction value on the basis of initial correction values and an output value of the preamplifier, whereby gain control and offset control can be performed stably even in radiation measurement.
Abstract:
An integrated circuit chip with digital and analog circuits thereon for providing a low cost infrared reflectance densitometer for detecting relative toner density on a photoreceptive surface including several stages of calibration including photodiode detection means 208 for monitoring and controlling the light output from a light emitting diode 206, photodiode means 302 for detecting undesired scattered and reflected background light signals, further photodiode means 304 for detecting the light reflected from said photoreceptive surface as may be affected by toner deposited thereon, an automatic gain control circuit 400 for automatically adjusting the output gain of the reflectance densitometer, and sample and hold circuit means 600 for adjusting the circuit for different effects of the aging, leakage current effects, or other undesired performance characteristics of the circuit components.
Abstract:
Examples of an apparatus are disclosed. In some example, an apparatus includes a photodiode configured to generate a charge in response to incident light; a measurement capacitor to store at least a part of the charge to generate a voltage; and an analog-to-digital converter (ADC) circuit configured to: in a first measurement period, compare the voltage at the measurement capacitor against a static threshold voltage to generate a first output; in a second measurement period, compare the voltage against a varying threshold voltage to generate a second output, wherein the varying threshold voltage varies with time according to a pre-determined pattern; and generate a final output representing an intensity of the incident light based on either the first output or the second output.
Abstract:
Techniques are disclosed for providing the weapon-mounted optical scope that provides for wind sensing and the display a ballistic solution without the need for a separate device. Embodiments may include various additional sensors housed within the weapon-mounted optical scope to provide data for the ballistic solution calculation. Embodiments may further include a display at the input aperture rather than internally at the first-focal-plane, enabling for simpler, more cost effective embodiments. Additionally or alternatively, embodiments may include a laser, separate from the wind sensing laser, to perform range-finding functions, and/or an enhanced-image assembly.
Abstract:
Techniques are disclosed for providing an optical sensor that can be used for wind sensing and an optical scope. The optical sensor can include a photodiode, an electrical switch, a trans-impedance amplifier (TIA), and a capacitive trans-impedance amplifier (CTIA), enabling the optical sensor to perform both wind-sensing and range-finding functions. Some embodiments may include some or all of these components in an application-specific integrated circuit (ASIC), depending on desired functionality.
Abstract:
There are provided an optical receiver and a laser radar including the same. The optical receiver includes a plurality of optical detecting units configured to convert an optical signal reflected from a target into an electrical signal and to output the electrical signal, a signal combiner configured to combine output signals of the plurality of light detecting regions, a plurality of switches provided between the plurality of optical detecting units and the signal combiner, and a controller configured to control the plurality of switches so that the plurality of optical detecting units are selectively connected to the signal combiner based on whether the optical signal to reflected from the target is input. Therefore, it is possible to make a module small, to improve stability and reliability, and to reduce a signal to noise ratio.
Abstract:
An imaging system includes an array of photodetectors and electronic circuitry associated with the photodetectors to read intensity values from the photodetectors. The electronic circuitry can include an integrator with an integrator capacitor having a nominal capacitance, wherein a gain of the electronic circuitry associated with a photodetector can depend at least in part on the actual capacitance of the integrator capacitor, the actual capacitance differing from the nominal capacitance. The imaging system can be configured to determine a gain factor that depends at least in part on the actual capacitance and/or a signal voltage input to the integrator. The imaging system can be configured to apply the gain factor based at least in part on the actual capacitance of the integrator capacitor calculated. The imaging system can be a thermal imaging system and may include an infrared camera core.
Abstract:
Techniques are disclosed for laser-based bore sighting, enabling wind sensing to be performed on captured images of the laser spot. Techniques can include image averaging, background subtraction, and filtering to help ensure that the Gaussian laser spot is detected in the image. Embodiments may include defining a bounding region and altering the operation of a camera such that the camera does not provide pixel data from pixels sensors corresponding pixels of outside the bounding region in subsequent image captures. Embodiments may additionally or alternatively include extracting two stereoscopic images from a single image capture.
Abstract:
A body-mountable device equipped with a light sensor is disclosed. The light sensor includes a photodiode that operates in either a photoconductive mode or a photovoltaic mode depending on whether the photodiode is reverse biased. A group of switches are arranged to selectively couple the photodiode to first and second voltage sources to configure the photodiode to operate in either mode. A controller selects a mode of operation of the photodiode and controls the switches to cause the photodiode to respond to incident light while operating in the selected mode. The controller then obtains a measurement from the photodiode indicative of the intensity of light received during an exposure interval. The light sensor can thus include a single photodiode and yet be used to alternately obtain measurements based on the photoconductive response of the photodiode or based on the photovoltaic response of the photodiode.
Abstract:
A process for producing a total match metric for matching color and appearance of a target coating and at least a specimen coating is provided. The total match metric (TMM) are produced based on color difference values (ΔE) at three or more color viewing angles, sparkle difference values (ΔS) at one or more sparkle viewing angles and flop difference value (Δf) between the target coating and the specimen coating using one or more linear functions, one or more non-linear functions, or a combination thereof. The total match metric can be used in producing matching coatings that match color and appearance of the target coating. The total match metric can be particularly useful for repair coating damages to vehicles.
Abstract translation:提供了用于产生用于匹配目标涂层和至少样品涂层的颜色和外观的总匹配度量的方法。 总匹配度量(TMM)是基于三个或更多个颜色视角上的色差值(&Dgr; E),一个或多个闪光视角上的闪光差值(&Dgr; S)和触发差值(&Dgr; f ),使用一个或多个线性函数,一个或多个非线性函数或其组合,在目标涂层和样品涂层之间。 总匹配度量可用于生产与目标涂层的颜色和外观相匹配的匹配涂层。 总匹配度量对于修理车辆的损坏可能特别有用。