Abstract:
A coaxial economizer for use in a chiller system comprising an inner housing and an outer housing having a common longitudinal axis. The outer housing has an inlet for receiving a fluid from a upstream compressor stage of a multistage compressor and an outlet for conveying a fluid to a downstream compressor stage of a multistage compressor. A flow chamber forms a fluid flow path about the inner housing. A flash chamber is coterminous with the flow chamber and flashes fluid in a liquid state to a gas state. A flow passage between said flash chamber and the flow chamber for conveying a flashed gas from the flash chamber to the flow chamber; wherein the flashed gas conveyed from the flash chamber and the fluid received from the inlet of the outer housing mix along the fluid flow path toward the outlet of the outer housing.
Abstract:
Apparatuses and methods are provided for facilitating cooling of an electronic component. The apparatus includes a vapor-compression refrigeration system, which includes an expansion component, an evaporator, a compressor and a condenser coupled in fluid communication. The evaporator is coupled to and cools the electronic component. The apparatus further includes a contaminant separator coupled in fluid communication with the refrigerant flow path. The separator includes a refrigerant cold filter and a thermoelectric array. At least a portion of refrigerant passing through the refrigerant flow path passes through the cold filter, and the thermoelectric array provides cooling to the cold filter to cool refrigerant passing through the filter. By cooling refrigerant passing through the filter, contaminants solidify from the refrigerant, and are deposited in the cold filter. The separator may further include a refrigerant hot filter coupled to a hot side of the thermoelectric array for further filtering the refrigerant.
Abstract:
Systems and methods for dehumidifying and conditioning air for a commercial building are presented. In one instance, a system involves ventilating a building at a rate higher than the required outdoor airflow rate in order to compensate for the fan being turned off when the compressor is off. Other systems and methods are presented.
Abstract:
An air conditioning and water producing system includes a heat pumping unit and a membrane contactor in thermal communication with the heat pumping unit. The membrane contactor is configured such that a first brine flow is cooled by the heat pumping unit and diluted at the membrane contactor. A distiller is in thermal communication with the heat pumping unit and the membrane contactor such that a second brine flow is heated by the heat pumping unit and conveyed through the distiller. Thermal interaction between the second brine flow and the first brine flow flowing through the distiller extracts water from the second brine flow.
Abstract:
A system and method recover water from an ambient airstream. Dehumidification of the airstream is also achieved by removal of the water. A device of the system includes a chamber having a group of trays that hold respective amounts of liquid desiccant in each tray. A foam media absorbs the desiccant to increase an exposed surface of the desiccant to the airstream. Fans and valves are used to control airflow through the device. A charge cycle circulates air through the device to remove water vapor from the airstream. A subsequent extraction cycle removes water collected in the liquid desiccant by a condenser communicating with the chamber. An integral heat exchanger adds heat to the chamber during the extraction cycle. A controller is used to integrate and manage all system functions and input variables to achieve a high efficiency of operational energy use for water collection.
Abstract:
A method to recover water from the atmosphere is provided. Dehumidification of the airstream is also achieved by removal of the water. A device of the system includes a chamber having a group of trays that hold respective amounts of liquid desiccant in each tray. A foam media absorbs the desiccant to increase an exposed surface of the desiccant to the airstream. Fans and valves are used to control airflow through the device. A charge cycle circulates air through the device to remove water vapor from the airstream. A subsequent extraction cycle removes water collected in the liquid desiccant by a condenser communicating with the chamber. An integral heat exchanger adds heat to the chamber during the extraction cycle. A controller is used to integrate and manage all system functions and input variables to achieve a high efficiency of operational energy use for water collection.
Abstract:
A phase separation apparatus is provided for separating a two-phase fluid flow into a liquid phase portion and a vapor phase portion. The phase separation apparatus may be applied to the separation of a two-phase refrigerant flow in a refrigerant vapor compression system operating in a transcritical cycle.
Abstract:
A refrigerant recovery unit is provided that can clear oil from an oil inject path in order to prepare the unit to switch over to a different kind of oil. The refrigerant recovery unit includes an oil inject circuit that receives an oil from the oil bottle into the refrigerant system. The refrigerant recovery circuit is coupled in fluid communication with the oil inject circuit. The refrigerant recovery circuit is operable to receive and transfer a fluid drawn through the oil inject circuit. A controller is operatively connected to the refrigerant recovery circuit and to the oil inject circuit so that as the fluid is drawn through the oil inject circuit a quantity of the oil in the oil inject circuit is removed.
Abstract:
In a cooling apparatus of an electronic equipment that cools down a heating element by circulating a refrigerant, air taken in once is prevented from taking in again into a water tank. A main water tank 1 includes two side surface parts 1a and 1b, and a cylindrical tubed part 1c. An inflow opening 2 is attached to a center of the side surface part 1a, and an outflow opening 3 is attached to a center of the side surface part 1b. A flexible pipe 6, which is made by a flexible material, is attached to the outflow opening 3 and a weight 7 is attached to an end of the flexible pipe 6.
Abstract:
A refrigerant recovery unit is provided that can recover and recharge refrigerant. The unit is further configured with a pair of service hoses and a refrigerant control circuit operable to receive and transport the refrigerant between the hoses and the storage vessel and to process the refrigerant to substantially remove contaminants from the refrigerant. A fluid connector is provided in fluid communication with the hoses to enable the refrigerant to flow between the hoses and to establish a closed loop through the refrigerant control circuit, and a controller is operatively connected to the refrigerant control circuit and configured to control a flow of the refrigerant through the refrigerant control circuit and through the fluid connector.