Abstract:
A wind turbine system may be configured with at least one wind turbine having an exterior surface. A distribution pipe positioned between the exterior surface and a drag feature with the drag feature connected to the exterior surface via at least one attachment feature. At least one nozzle can continuously extend from the distribution pipe through the drag feature. A controller connected to the distribution pipe may selectively activate the at least one nozzle to eject compressed fluids from the turbine blade to modify a preexisting radial velocity of the at least one turbine blade.
Abstract:
A vertical axis wind turbine system having a vertical mast with one or more turbine units supported thereon. The turbine units are of modular construction for assembly around the foot of the mast; are vertically moveable along the height of the mast by a winch system; and are selectively interlocking with the mast to fix the turbine units in parked positions. The turbine system and each turbine unit includes a network of portals and interior rooms for the passage of personnel through the system, including each turbine unit. The electrical generators, and other sub-components, in the turbine units are of modular construction that permits the selective removal and replacement of component segments, including the transport of component segments through the portals and interior rooms of the turbine system while the turbine units remain supported on the mast. The electrical generators are also selectively convertible between AC generators and DC generators.
Abstract:
The invention relates to a light floating flue consisting of a wall of fiber-reinforced film which rotates about its axis to balance the reduced pressure in the flue with the centrifugal force on the gases in the flue and with the flue wall. The flue floats due to the friction with the rising air, the upward force of the lighter gases, optionally a zeppelin and balloon-like bodies filled with helium or hydrogen. In order to prevent bending moments on the flue, the flue is attached to the base of the tower by means of a tillable bearing.
Abstract:
Described herein is essentially a high-efficiency, hybrid fluid-aeolipile. In operation, this hybrid device is placed in the stream of a moving fluid, preferably air. Energy is extracted from the fluid stream by directing a portion of the stream through and, optionally, around the device. As the fluid-flow moves through the device, it is directed into nozzles. These nozzles, which are free to pivot in a cyclical manner, employ the established phenomenon of “nozzle-effect” to accelerate the velocity of the air-flow passing through them, which is ultimately ejected from each nozzle tip, producing thrust. This thrust, amplified by nozzle-effect, drives the nozzles to pivot around a shared axis. The wind energy, thereby converted into cyclical motion, that may be used to perform useful work, is converted with greater efficiency, than is possible in conventional blade-type wind turbines.
Abstract:
An air distribution system for use with a wind turbine. The wind turbine includes a nacelle that is coupled to a tower and a rotor that is rotatably coupled to the nacelle with a rotor shaft. The rotor includes at least one rotor blade that is coupled to a hub. The air distribution system includes a conduit that is defined within the rotor shaft. The conduit provides flow communication between the nacelle and the rotor. An air-flow control assembly is coupled in flow communication with the conduit. The air-flow control assembly is configured to selectively channel air from the nacelle to the rotor and from the nacelle to ambient air.
Abstract:
A method of assembling an air distribution system for use in a rotor blade of a wind turbine. The rotor blade includes a sidewall at least partially defining a cavity extending from a blade root towards a blade tip. The method includes positioning at least a portion of a manifold within the cavity and coupling the manifold to the sidewall. The manifold extends from the blade root towards the blade tip and has a root end and an opposing tip end. A passage is defined from the root end to the tip end. A flow control device is coupled to the manifold root end and configured to channel air through the manifold. A bypass flow assembly is coupled to the manifold and configured to channel air through the air distribution system with the flow control device in a non-operating configuration.
Abstract:
The invention relates to a wind turbine comprising a rotor with a hub and turbine blades, and further comprising a boundary layer control system for the turbine blades. A plurality of pressure chambers is located in the blade distributed over the length of the blade. Each pressure chamber is in communication with the outside of the blade through one or more corresponding openings in the outer surface of the turbine blade. Furthermore a suction channel and a blow channel extend inside the blade for supplying an underpressure and an overpressure respectively to the pressure chamber, each pressure chamber being connected to at least one of said channels through an air passage in which an actively operable valve is located. The valve is connected to a control unit for selectively bringing the pressure chamber into communication with or close it off from said channel(s) so as to blow air out of the pressure chamber or suck air into the pressure chamber through the corresponding opening(s) in the blade surface.
Abstract:
The present invention relates to the prevention of deformations in an aerodynamic profile caused by lack of resistance to the bending moment forces that are created when such a profile is loaded in operation. More specifically, the invention relates to a reinforcing element inside an aerodynamic profile and a method for the construction thereof. The profile is intended for, but not limited to, use as a wind turbine blade, an aerofoil device or as a wing profile used in the aeronautical industry.
Abstract:
A blade for a wind turbine includes a means for causing air at an increased velocity and/or pressure to escape from exit openings in the blade, thereby to apply a force that increases the rotational velocity of the blade. In one embodiment of the invention described a fan or vacuum in the blade causes an increase in the air velocity within a hollow air chamber in the blade. In another embodiment of the invention described, a compressor or one-way valve is used to increase the pressure of the air within the interior hollow air chamber. Pressure and diameter adjustable valves may be provided at each exit opening or orifice to allow the air to exit from the blade only when the air pressure within the blade exceeds a preset level. Also disclosed is the provision of valves at exit openings or orifices on an opposite edge of the blade that allows air to escape from the blade to slow down but not stop the rotation of the blade when a dangerous wind condition is detected.