Abstract:
An optimized Rankine thermodynamic cycle system and method include utilizing a working fluid including a base component and an effective amount of a lower boiling point component, where the effective amount is sufficient to raise a power utilization efficiency of the systems by up to 10%, without changing a weight of the fluid reducing turbine efficiency for the particular base component and for optimizing output control valves for adjusting the working fluid composition and temperature sensors measuring an initial temperature of a coolant medium and a final temperature of a heat source stream to computer control valves to continuously adjust a pressure and a flow rate of a working fluid stream to be vaporized so that a heat utilization of the system is about 99% increasing output by approximately 3% to 6% on a sustained and permanent yearly basis.
Abstract:
An optimized Rankine thermodynamic cycle system and method include utilizing a working fluid including a base component and an effective amount of a lower boiling point component, where the effective amount is sufficient to raise a power utilization efficiency of the systems by up to 10%, without changing a weight of the fluid reducing turbine efficiency for the particular base component and for optimizing output control valves for adjusting the working fluid composition and temperature sensors measuring an initial temperature of a coolant medium and a final temperature of a heat source stream to computer control valves to continuously adjust a pressure and a flow rate of a working fluid stream to be vaporized so that a heat utilization of the system is about 99% increasing output by approximately 3% to 6% on a sustained and permanent yearly basis.
Abstract:
In a plant including a system which is provided with a steam generator 2, a turbine 3, 5, a condenser 6 and a heater 7 and in which non-deaerated water circulates, and a pipe, the steam generator 2, the heater 7 and 8 of the system which comes into contact with the non-deaerated water is deposited with a protective substance.
Abstract:
A measuring device for carrying out purity measurements in a media circuit of a power station with an ion exchanger device and a measuring means for measuring a parameter of a media current flowing through the ion exchanger device is described. In order to obtain measurements in a rapid and reliable manner at the start up of the ion exchanger device, for example during the start-up phase of the power station, it is suggested that the ion exchanger device has two flow paths for two different operating modes of the power station.
Abstract:
A filtering apparatus having a vessel and a filter made from fluororesin and treated before filtering operation by at least one of adding thermal treatment in gas or liquid and penetrating with fluid composed of hot water or steam at a temperature of less than melting point of the fluororesin.
Abstract:
The invention relates to a method for operating a steam power station and a power plant as well as a corresponding steam power station. According to the invention, essentially all of the water that is drained from at least one pressure stage of the steam power station is collected, stored, and recirculated into the water circuit of steam power station.
Abstract:
A filtering apparatus having a vessel and a filter made from fluororesin and treated before filtering operation by at least one of adding thermal treatment in gas or liquid and penetrating with fluid composed of hot water or steam at a temperature of less than melting point of the fluororesin.
Abstract:
A filtering apparatus having a vessel and a filter made from fluororesin and treated before filtering operation by at least one of adding thermal treatment in gas or liquid and penetrating with fluid composed of hot water or steam at a temperature of less than melting point of the fluororesin.
Abstract:
In a method for preventing the deposition of impurities in steam systems, in which steam of a given steam quality flowing in them is subject to temperature and/or pressure changes, a simple prevention of deposits is achieved in that an appropriate structural configuration and design of the steam systems prevents the steam solubility of the impurities present in specific concentrations in the steam from being exceeded as a result of changes in the temperature and/or pressure conditions.
Abstract:
A system (10) particularly suited for employment for purposes of effectuating the monitoring, diagnosing and controlling of the chemistry of the water and steam in a steam generator steam cycle (46). The subject system (10) is operative to monitor water and steam quality at a number of critical locations (70,72,74,76) in the steam generator steam cycle (46). Based on the information gathered through such monitoring of water and steam quality, the subject system (10) is designed to be operative to provide diagnoses of potential causes of upsets in the steam generator steam cycle chemistry and to suggest corrective actions as appropriate. Furthermore, historical data is also readily available from the subject system (10) which can be utilized for identifying trends and for assessing the operational chemistry of the steam generator steam cycle (46) both on a short-term basis and on a long-term basis.