Abstract:
An electrophysiological mapping device includes an outer catheter, an inner catheter slidable within the outer catheter, and an electronic activation and recording device for electrically activating electrodes on the inner catheter and/or recording electric signals received by the electrodes. The distal end of the inner catheter comprises a plurality of arms that carry electrodes. The arms bow outwardly upon extension of the inner catheter from the outer catheter to form a three-dimensional shape. Each arm has a spine of a superelastic material. Each spine is semicircular in section, and is disposed within a portion of a flexible sheath, the electrode lead wires being disposed in the rest of the sheath. The electrodes are formed from the ends of the insulated electrode lead wires which pass through the sheath, are wrapped around the sheath and then stripped of their insulation. The proximal and distal ends of the spines are fixed to proximal and distal fittings, each having a polygonal segment having flat sides which engage the flat surfaces of the spines and a clamping ring to secure the spines to the segments.
Abstract:
A cardiovascular catheter comprises an elongated catheter body having a flexible plastic wall reinforced with at least two concentrically spaced-apart braided stainless steel meshes. The catheter exhibits high resistance to buckling and torsional stiffness to allow precise rotational control of the catheter tip.
Abstract:
A cardiovascular electrode catheter for use in arrhythmia ablation procedures has a dumbbell-shaped large-tip electrode having an annular recess or indentation. The annular recess divides the electrode into a ball-shaped distal portion and a generally cylindrical proximal portion. Both the distal and proximal portions of the electrode have a diameter substantially the same as that of the catheter body. The recess enables the electrode to grip the mitral or tricuspid annulus or the atrial or ventricular myocardial wall to improve ablation procedures.
Abstract:
An electrophysiological mapping device includes an outer catheter, an inner catheter slidable within the outer catheter, and an electronic activation and recording device for electrically activating electrodes on the inner catheter and/or recording electric signals received by the electrodes. The distal end of the inner catheter comprises a plurality of arms that carry electrodes. The arms bow outwardly upon extension of the inner catheter from the outer catheter to form a three-dimensional shape. Each arm has a spine of a superelastic material. Each spine is semi-circular in section, and is disposed within a portion of a flexible sheath, the electrode lead wires being disposed in the rest of the sheath. The electrodes are formed from the ends of the insulated electrode lead wires which pass through the sheath, are wrapped around the sheath and then stripped of their insulation. The proximal and distal ends of the spines are fixed to proximal and distal fittings, each having a polygonal segment having flat sides which engage the flat surfaces of the spines and a clamping ring to secure the spines to the segments.
Abstract:
A catheter, which is adapted to be inserted into a body lumen, comprises a symmetrical cylindrical control handle, an elongate tubular catheter body, and a flexible catheter tip having a lumen offset from the axis of the catheter tip. The control handle comprises a housing having a piston chamber at its distal end. A piston is mounted in the piston chamber and is afforded lengthwise movement. The proximal end of the catheter body is fixedly attached to the distal end of the piston. A puller wire is attached to the housing and extends through the piston, through and coaxial with the catheter body and into the offset lumen of the catheter tip where it is attached to the wall of the catheter tip. Lengthwise movement of the piston relative to the housing results in deflection of the catheter tip.
Abstract:
A catheter, which is adapted to be inserted into a body lumen, comprises a symmetrical cylindrical control handle, an elongate tubular catheter body, and a flexible catheter tip having a lumen offset from the axis of the catheter tip. The control handle comprises a housing having a piston chamber at its distal end. A piston is mounted in the piston chamber and is afforded lengthwise movement. The proximal end of the catheter body is fixedly attached to the distal end of the piston. A puller wire is attached to the housing and extends through the piston, through and coaxial with the catheter body and into the offset lumen of the catheter tip where it is attached to the wall of the catheter tip. Lengthwise movement of the piston relative to the housing results in deflection of the catheter tip.