Abstract:
A method and apparatus to detect a coupling region in a wireless power transmission and reception system are provided. To detect a coupling region, a wireless power transmission apparatus receives state information of a wireless power reception apparatus, calculates a variation in the state information due to movement of the wireless power reception apparatus, and generates coupling region update information of the wireless power reception apparatus, based on the variation. The receiving, the calculating, and the generating are repeatedly performed.
Abstract:
An electronic device and method for transmitting and receiving a wireless power are provided. An electronic device for transmitting and receiving wireless power may include a resonator configured to operate, based on a plurality of operating modes of the electronic device including a power reception mode, a relay mode, and a power transmission mode, wherein: (i) in the power reception mode, the resonator is configured to receive power from a wireless power transmitter, (ii) in the relay mode, the resonator is configured to relay power received from the wireless power transmitter to a wireless power receiver, and (iii) in the power transmission mode, the resonator is configured to transmit power to the wireless power receiver; and a path controller configured to control at least one electrical pathway of electronic device based on the operating mode.
Abstract:
A wireless power transmission system, and a method for controlling wireless power transmission and wireless power reception are provided. According to an aspect, a method for controlling a wireless power transmission may include: detecting a plurality of target devices used to wirelessly receive power; selecting a source resonating unit from among a plurality of source resonating units, based on the amount of power to be transmitted to one or more of the plurality of target devices, a coupling factor associated with one or more of the plurality of target devices, or both; and wirelessly transmitting power to a target device using the selected source resonating unit.
Abstract:
A portable device is provided. The portable device includes a power receiving unit configured to receive a first energy or a second energy from a wireless power transmitter, the first energy being used to perform a communication function and a control function, the second energy being used to charge a battery, and the wireless power transmitter being configured to wirelessly transmit a power, a voltage generator configured to generate a wake-up voltage from the first energy, or to generate a voltage for charging the battery from the second energy, a controller configured to perform the communication function and the control function, the controller being activated by the wake-up voltage, and a communication unit configured to perform a communication with the wireless power transmitter based on a control of the controller.
Abstract:
A method and an apparatus for controlling wireless power transmission are provided. An apparatus for controlling wireless power transmission includes a controller configured to determine an output voltage of a power factor correction unit based on charging information of a battery, the power factor correction unit configured to correct an input voltage into the determined output voltage, and output a variable voltage, and a resonance unit configured to transmit power converted from the variable voltage to a wireless power reception apparatus.
Abstract:
A wireless power transmission system based on cell division is provided. A communication and power control method of the wireless power transmission system, includes setting a magnetic coupling zone. The method further includes detecting a target device in the magnetic coupling zone. The method further includes transmitting a power to the target device. The method further includes adjusting an amount of the power based on a transmission efficiency of the power.
Abstract:
Provided are a wirelessly charged robot cleaner in a robot cleaning system and a controlling method thereof. The wirelessly charged robot may include a target resonator to receive a resonance power through energy-coupling with a source resonator of a wireless power transmitter, a wireless power receiving unit to convert the received resonance power into a rated voltage, and a battery controller to check a remaining capacity of the battery based on a scope of a predetermined area to be cleaned, and to charge, using the rated voltage, the battery based on the remaining capacity of the battery.
Abstract:
An apparatus and method for performing communication in a wireless power transmission system are provided. The apparatus includes a channel search unit configured to search for communication channels other than a channel used in wireless power transmission, and measure state information of the communication channels. The apparatus includes a channel determining unit configured to determine a communication channel available for communication with a target device based on the measured state information. The apparatus includes a communication unit configured to transmit an access instruction to the target device using the determined communication channel The apparatus includes a controller configured to determine whether to communicate with the target device using the determined communication channel based on whether a response signal corresponding to the access instruction is received.
Abstract:
An electronic device is provided. The electronic device includes a touch screen module including at least one touch sensor and a display screen, a memory, and at least one processor electrically connected to the touch screen module and the memory. The touch screen module operates in at least one of a first state in which no input is received through the at least one touch sensor and no display screen operates, a second state in which an input is received using at least a portion of the at least one touch sensor and no display screen operates, or a third state in which all of the at least one touch sensor and all of the display screen operate. The second state switches to a fourth state in which a portion, but not all of the display screen is displayed, in response to a user input received using at least a portion of the at least one touch sensor at the second state.
Abstract:
An overvoltage protecting unit and an overcurrent protecting unit protect a power device from an overvoltage and an overcurrent using a comparator having hysteresis. An overtemperature protecting unit protects the power device from an overtemperature using a thermistor having a resistance that changes as a temperature of the thermistor changes.