Abstract:
A scan driver includes a plurality of stages for respectively outputting a plurality of scan signals, an N-th stage of the stages including a shift register for outputting an N-th carry signal based on a frame start signal or based on a carry signal from a previous stage, and an output control block for outputting the N-th carry signal as an N-th scan signal in a display mode, and for repeatedly outputting active periods of the N-th scan signal during an active period of the N-th carry signal in a sensing mode, wherein N is a positive integer.
Abstract:
A degradation compensating pixel circuit includes: an organic light emitting diode (OLED); a driving circuit including a first capacitor and a first transistor, the first capacitor being configured to be charged in response to a data signal and a scan signal, the first transistor being configured to drive the OLED according to a first voltage between first and second terminals of the first capacitor, the first terminal of the first capacitor being configured to receive a supply voltage, the second terminal of the first capacitor being coupled to a gate terminal of the first transistor; and a degradation compensating circuit coupled to a source terminal of the first transistor and the gate terminal of the first transistor, the degradation compensating circuit being configured to change the first voltage according to a first current of the first transistor.
Abstract:
There is provided a pixel having an improved display quality. The pixel includes an OLED, a first transistor including a first electrode coupled to a data line and a second electrode coupled to an anode electrode of the OLED, and configured to control a current supplied to the OLED based on a voltage applied to a first node; a second transistor coupled between the data line and a second node; a third transistor coupled between the second node and a first power line for supplying reference power; and a first capacitor coupled between the first node and the second node.
Abstract:
A pixel circuit and an electroluminescent display including the same are disclosed. In one aspect, the pixel circuit includes a scan transistor connected between a data line and a first node and having a gate electrode configured to receive a scan signal, a driving transistor connected between a first power supply voltage and a third node and having a gate electrode connected to a second node, an emission control transistor connected between the third node and a fourth node and having a gate electrode configured to receive an emission control signal, a light-emitting diode connected between the fourth node and a second power supply voltage less than the first power supply voltage, and a compensation circuit initializes the second node to an initial voltage during a first compensation period and electrically connects the second node to the third node during a second compensation period following the first compensation period.
Abstract:
Each pixel of a display device includes: an organic light emitting diode between a first and a second power supply; a first transistor to transmit a drive current based on data signals; a second transistor to couple a gate electrode of the first transistor to the data line in response to a scan signal; a first capacitor between the first power supply and the gate electrode of the first transistor; a light receiving element coupled to a third power supply; a second capacitor between the light receiving element and a fourth power supply; a third transistor between the data line and a first electrode of the second capacitor, the third transistor including a gate electrode coupled to a selection signal line; and a fourth transistor between the fourth power supply and the third transistor, the fourth transistor including a gate electrode coupled to the first electrode of the second capacitor.
Abstract:
A pixel includes a plurality of organic light emitting diodes, each of which including a cathode electrode coupled to a second power source, a pixel circuit coupled to a scan line and to a data line, the pixel circuit configured to control current supplied from a first power source to the organic light emitting diodes corresponding to a data signal supplied to the data line, and first transistors between the pixel circuit and respective ones of the organic light emitting diodes, the first transistors configured to be turned on or to be turned off when a low emission control signal is supplied to a first emission control line, wherein a scan signal supplied to the scan line is a first voltage, and wherein the low emission control signal is a second voltage that is different than the first voltage.
Abstract:
A pixel includes an organic light emitting diode, a first driver and a second driver. The second driver controls an amount of current supplied from a first power source to the organic light emitting diode, corresponding to a previous data signal. The first driver stores a current data signal supplied from a data line and supplies the previous data signal to the second driver. In the pixel, the second driver includes a sixth transistor coupled between an initialization power source and a first node coupled to a gate electrode of a first transistor, the sixth transistor being configured to turn on when a first control signal is supplied; and a seventh transistor coupled between the first power source and a second node commonly coupled to the first and second drivers, the seventh transistor being configured to turn on when the first control signal is supplied.