Abstract:
An organic light-emitting display apparatus and a method for forming the same, the apparatus including a transparent protection layer on a substrate; a via insulation layer on the transparent protection layer; a pixel electrode on the via insulation layer; an opposite electrode on the pixel electrode; and an intermediate layer between the pixel electrode and the opposite electrode, the intermediate layer including an organic emission layer.
Abstract:
Provided is an organic light-emitting display apparatus. The organic light-emitting display apparatus including: pixels arranged in a display region of a substrate and at intersections between scanning lines and data lines; a first initialization main line arranged along a first side of the display region of the substrate; a second initialization main line arranged along a second side of the display region of the substrate; an initialization power line electrically connected to the pixels and to the first initialization main line and the second initialization main line; and a first electrical connection portion comprising a doped semiconductor layer of which a first portion is connected to the first initialization main line and a second portion is connected to the initialization power line.
Abstract:
In an aspect, an organic light-emitting display apparatus including: a substrate; a thin film transistor (TFT) formed on the substrate and comprising an active layer, a gate electrode, a source electrode, and a drain electrode; a first insulating layer formed on the TFT; a pixel electrode; a second insulating layer formed on the first insulating layer; and an opposite electrode formed on the intermediate layer is provided.
Abstract:
A thin film transistor, a method of manufacturing the same, and a display device including the same, the thin film transistor including a substrate; a polysilicon semiconductor layer on the substrate; and a metal pattern between the semiconductor layer and the substrate, the metal pattern being insulated from the semiconductor layer, wherein the polysilicon of the semiconductor layer includes a grain boundary parallel to a crystallization growing direction, and a surface roughness of the polysilicon semiconductor layer defined by a distance between a lowest peak and a highest peak in a surface thereof is less than about 15 nm.
Abstract:
A thin film transistor TFT, including a substrate, a gate electrode on the substrate, a gate insulating layer on the gate electrode, an active layer on the gate insulating layer, the active layer corresponding to the gate electrode and including a channel region, source and drain electrodes contacting the active layer, the source and drain electrodes being separate from each other, and an ohmic contact layer between the active layer and at least one of the source and drain electrodes, the ohmic contact layer including an oxide semiconductor material.
Abstract:
A flat panel display device includes a pixel circuit provided on a substrate, a pixel wiring, an inspection pad connected to the pixel circuit through the pixel wiring, a main wiring separated from the inspection pad by a gap, and a common electrode covering substantially the entire substrate and electrically connecting the inspection pad to the main wiring.
Abstract:
Provided is an organic light-emitting display apparatus. The organic light-emitting display apparatus including: pixels arranged in a display region of a substrate and at intersections between scanning lines and data lines; a first initialization main line arranged along a first side of the display region of the substrate; a second initialization main line arranged along a second side of the display region of the substrate; an initialization power line electrically connected to the pixels and to the first initialization main line and the second initialization main line; and a first electrical connection portion comprising a doped semiconductor layer of which a first portion is connected to the first initialization main line and a second portion is connected to the initialization power line.
Abstract:
A display apparatus for improving corrosion resistance of a pad area and a method of manufacturing the same. The display apparatus includes a first substrate including a display area, a non-display area, and a pad area, and a second substrate facing the first substrate and corresponding to at least the display area, wherein the pad area includes, a connection area connected to a driving circuit; an exposed area spaced from the connection area; and a plurality of blocking areas between the connection area and the exposed area.
Abstract:
An organic light emitting diode display device comprises a substrate which includes a plurality of pixel regions each having a sub-pixel region and a transparent region. In each pixel region, an active layer is disposed in the sub-pixel region. A gate electrode overlaps the active layer. A first electrode is disposed on the active layer, and contacts the active layer. A second electrode is spaced apart from the first electrode, and contacts the active layer. A first lower electrode having a first thickness is disposed in the sub-pixel region and connected to the second electrode. A second lower electrode is disposed in the transparent region on the substrate, located at a same level as the gate electrode. The second lower electrode has a second thickness that is less than the first thickness, and is transparent.
Abstract:
An organic light-emitting diode (OLED) display apparatus including a substrate, an insulation layer on the substrate, and an align mark formed of an insulation material, wherein an upper surface of the insulation layer contacts a lower surface of the align mark.