Abstract:
A system and method for controlling a tail-sitter aircraft, includes determining a mode of operation for the aircraft; operating each of a large turbine engine and a small turbine engine to provide total aircraft power during hover or high-power mode of operation; and selectively providing aircraft power from the small turbine engine to a plurality of rotors during a long-range endurance cruise mode of operation.
Abstract:
An electrically powered of the vertical takeoff and landing aircraft configured for use with a tether station having a continuous power source is provided including at least one rotor system. The vertical takeoff and landing aircraft additionally has an autonomous flight control system coupled to the continuous power source. The autonomous flight control system is configured to operate an electrical motor coupled to the at least one rotor system such that the vertical takeoff and landing aircraft continuously hovers above the tether station in a relative position. The vertical takeoff and landing aircraft also includes a detection system for detecting objects at a distance from the vertical takeoff and landing aircraft.
Abstract:
An adjustable cable attachment system for a VTOL aircraft includes a VTOL airframe. A winch is operatively connected to an underside of the airframe with the aircraft in a horizontal flight mode. An adjustable cable is operatively connected to the winch to adjustably relocate a slung load with respect to the center of gravity of the aircraft to balance the aircraft. A fixed cable is operatively connected to the underside of the airframe with the aircraft in the horizontal flight mode.
Abstract:
A drive system for a rotorcraft includes at least one engine, the engine including a compressor section, and a turbine section positioned rearward from the compressor section. A main rotor input shaft extends from a rotor power turbine of the turbine section and is connectable to a main rotor assembly of the rotorcraft to transfer rotational energy from the rotor power turbine to the main rotor assembly. An auxiliary input shaft extends from an auxiliary power turbine of the turbine section and is connectible to an auxiliary rotor assembly of the rotorcraft to transfer rotational energy from the auxiliary power turbine to the auxiliary rotor assembly.
Abstract:
A rotor blown wing (RBW) aircraft including an airframe, at least one rotor blown wing (RBW) having at least control selectively controllable surface, at least one rotor configured to generate and direct an airflow over the at least one RBW, and a control system operatively connected to the at least two selectively controllable control surfaces. The control system selectively controls the at least one selectively controllable control surface to change the airflow over the at least one RBW to facilitate a vertical landing.
Abstract:
A flight control system for an aircraft includes a flight control computer operatively interconnected with a main rotor system and a translational thrust system of the aircraft. A selectively enabled integrated target and flight control system arranged in communication with the flight control computer. The integrated target flight and control system is configured to control pitch attitude and heading of the aircraft. When the integrated target and flight control system is enabled, at least partial operation of the aircraft is controlled in response to a pilot input via the flight control computer.
Abstract:
A tail-sitter aircraft is provided and includes a fuselage having first and second axisymmetric sides, first collectively controllable prop-rotors, which are formed to define a first pair of rotor disks and which are respectively supported at the first axisymmetric side of the fuselage, and second collectively controllable prop-rotors, which are formed to define a second pair of rotor disks and which are respectively supported at the second axisymmetric side of the fuselage.
Abstract:
An aircraft includes a fuselage and a wing extending from each lateral side of the fuselage. A nacelle is pivotably se cured to each wing. The nacelle has a rotor located thereat, with the rotor having a rotor tip path plane defined by rotation of the rotor about a rotor axis of rotation. When the rotor tip path plane is changed relative to the wing, the nacelle pivots relative to the wing about a nacelle hinge axis to reduce flapping required by the rotor. A method of operating an aircraft includes changing a rotor tip path plane orientation relative to a wing of the aircraft. The rotor disposed at a nacelle, with the nacelle pivotably secured to the wing. The nacelle is pivoted relative to the wing to reduce an overall tip path plane change requirement of the rotor.
Abstract:
A rotor blown wing (RBW) aircraft including an airframe, at least one rotor blown wing (RBW) having at least control selectively controllable surface, at least one rotor configured to generate and direct an airflow over the at least one RBW, and a control system operatively connected to the at least two selectively controllable control surfaces. The control system selectively controls the at least one selectively controllable control surface to change the airflow over the at least one RBW to facilitate a vertical landing.
Abstract:
An aircraft is provided and includes a single sensor and wings extending outwardly in opposite directions from a fuselage. Each wing includes a main section, an engine section supported on the main section and tail surfaces extending transversely relative to the main section. The single sensor is mountable to one of the tail surfaces with a field of view (FOV) representable as a spherical wedge having a dihedral angle exceeding 180°.