Abstract:
Disclosed is a manufacturing method for a stepped imaging directional backlight apparatus which may include a structured optical film and a tapered body. The structured optical film may include multiple optical functions and may be assembled by folding onto the tapered body, reducing cost and complexity of manufacture.
Abstract:
Disclosed is a light guiding valve apparatus including a light valve, a two dimensional light emitting element array and an input side arranged to reduce light reflection for providing large area directional illumination from localized light emitting elements with low cross talk. A waveguide includes a stepped structure, in which the steps may include extraction features hidden to guided light propagating in a first forward direction. Returning light propagating in a second backward direction may be refracted or reflected by the features to provide discrete illumination beams exiting from the top surface of the waveguide. Stray light falling onto a light input side of the waveguide is at least partially absorbed.
Abstract:
An imaging directional backlight apparatus including a waveguide, a light source array, for providing large area directed illumination from localized light sources. The waveguide may include a stepped structure, in which the steps may further include extraction features optically hidden to guided light, propagating in a first forward direction. Returning light propagating in a second deflected direction may be refracted, diffracted, or reflected by the features to provide discrete illumination beams exiting from the top surface of the waveguide. Viewing windows are formed through imaging individual light sources from the side of the waveguide and hence defines the relative positions of system elements and ray paths. A directional backlight with small footprint and low thickness may be provided.
Abstract:
A directional display apparatus including a directional display device that is capable of directing a displayed image into a viewing window of variable width is provided with a privacy control function. A control system detects the presence of one or more secondary viewers in addition to a primary viewer, and decides whether the one or more secondary viewers is permitted to view the displayed image. The control system directs a displayed image into a viewing window which is adjusted, for example by decreasing the width, in dependence on that detection. In addition, the control system detects relative movement between the primary viewer and the display device, and the width of the viewing window is increased in response to detection of said relative movement.
Abstract:
An imaging directional backlight apparatus includes a waveguide and a light source array for providing large area directed illumination from localized light sources. The waveguide may include a stepped structure. The steps may include extraction features optically hidden to guided light, propagating in a first forward direction. Returning light propagating in a second backward direction may be refracted, diffracted, or reflected by the features, providing discrete illumination beams exiting from the top surface of the waveguide. Viewing windows are formed through imaging individual light sources and define the relative positions of system elements and ray paths. The uncorrected system creates non-illuminated void portions when viewed off-axis preventing uniform wide angle 2D illumination modes. The input end may have microstructures arranged to remove this non uniformity at wide angles. The microstructures may have reduced reflectivity for parts of the input end that contribute to stray light in privacy and autostereoscopic modes.
Abstract:
An imaging directional backlight apparatus including a waveguide, a light source array, for providing large area directed illumination from localized light sources. The waveguide may include a stepped structure, in which the steps may further include extraction features optically hidden to guided light, propagating in a first forward direction. Returning light propagating in a second deflected direction may be refracted, diffracted, or reflected by the features to provide discrete illumination beams exiting from the top surface of the waveguide. Viewing windows are formed through imaging individual light sources from the side of the waveguide and hence defines the relative positions of system elements and ray paths. A directional backlight with small footprint and low thickness may be provided.
Abstract:
An imaging directional backlight apparatus including a waveguide, a light source array, for providing large area directed illumination from localized light sources. The waveguide may include a stepped structure, in which the steps may further include extraction features optically hidden to guided light, propagating in a first forward direction. Returning light propagating in a second backward direction may be refracted, diffracted, or reflected by the features to provide discrete illumination beams exiting from the top surface of the waveguide. Viewing windows are formed through imaging individual light sources and hence defines the relative positions of system elements and ray paths. Lateral non-uniformities of output image are improved by means of adjustment of input aperture shape and reflective aperture shape. Cross talk in autostereoscopic and privacy displays may further be improved by light blocking layers arranged on the input end of the waveguide.
Abstract:
Disclosed is a light guiding valve apparatus including a light valve, a two dimensional light emitting element array and an input side arranged to reduce light reflection for providing large area directional illumination from localized light emitting elements with low cross talk. A waveguide includes a stepped structure, in which the steps may include extraction features hidden to guided light propagating in a first forward direction. Returning light propagating in a second backward direction may be refracted or reflected by the features to provide discrete illumination beams exiting from the top surface of the waveguide. Stray light falling onto a light input side of the waveguide is at least partially absorbed.
Abstract:
An autostereoscopic display comprising a temporally multiplexed display arranged to provide viewing windows in a range around 45 degrees to achieve landscape and portrait viewing in cooperation with an observer tracking system. The temporally multiplexed display may comprise a stepped waveguide imaging directional backlight.
Abstract:
A directional backlight may include a light guiding apparatus including at least one transparent optical waveguide for providing large area collimated illumination from localized light sources. The waveguide is arranged in a first part and a second part with a light injection aperture between the respective parts. Such controlled illumination may provide for efficient, multi-user autostereoscopic displays as well as improved 2D display functionality including high brightness displays and high display efficiency.