Abstract:
Various methods, apparatuses and/or articles of manufacture are provided which may be implemented using one or more fixed electronic devices to generate a reference data report corresponding to a particular environment. Various methods, apparatuses and/or articles of manufacture are provided which may be implemented using one or more mobile electronic devices to generate an environment report corresponding to a particular environment.
Abstract:
Systems, apparatus and methods for determining a cyclic shift delay (CSD) mode from a plurality of CSD modes is disclosed. A received OFDM signal is converted to a channel impulse response (CIR) signal in the time domain and/or a channel frequency response (CFR) signal in the frequency domain. Matched filters and a comparator are used to determine a most likely current CSD mode. Alternatively, a classifier is used with a number of inputs including outputs from two or more matched filters and one or more outputs from a feature extractor. The feature extractor extracts features in the time domain from the CIR signal and/or in the frequency domain from the CFR signal useful in distinguishing various CSD modes.
Abstract:
Systems, methods and devices for improving the accuracy of GNSS data are provided. Specifically, embodiments of the invention can advantageously use sensor input to improve the accuracy of position fixes. The use of physical 5 sensors in navigation systems is deemed particularly advantageous, especially where altitude data derived from the pressure sensor is calibrated with and/or blended with GNSS altitude data.
Abstract:
Various techniques are provided which may be implemented as methods, apparatuses and articles of manufacture for use by a mobile device. In certain example implementations, a mobile device may process a barometric pressure measurement indicative of an altitude effect and a weather effect to determine a first parameter corresponding to the altitude effect and a second parameter corresponding to the weather. Such a mobile device may further determine whether it may be transitioning or may have transitioned from an initial level to another level of a multiple level structure based, at least in part, on the first and second parameters.
Abstract:
Disclosed are systems, apparatus, devices, methods, media, products, and other implementations, including a method that includes determining, at a first wireless device comprising multiple transmit antennas, at least one signal transmission characteristic according to at least one pre-determined varying transmission characteristic determination process. The at least one transmission characteristic includes, for example, a transmit antenna selected from the multiple transmit antennas, a beam characteristic, a cyclic delay diversity parameter, and/or any combination thereof. The method also includes transmitting from the first wireless device to a second wireless device a signal using the at least one signal transmission characteristic determined according to the at least one pre-determined varying transmission characteristic determination process. The transmitted signal is configured to facilitate position determination of the second wireless device upon deriving at the second wireless device a reconstructed value of the at least one signal transmission characteristic determined at the first wireless device.
Abstract:
Disclosed are systems, apparatus, devices, methods, computer program products, and other implementations, including a method that includes receiving signals at a mobile device from one or more access points, computing one or more positioning quality parameters by analyzing the received signals, and determining based, at least in part, on the computed one or more positioning quality parameters whether the mobile device is inside at least one of one or more areas respectively associated with the one or more access points.
Abstract:
A method of determining a position of a target device includes: sending a first measurement signal from a first known-position device; receiving the first measurement signal at a second known-position device; receiving a first acknowledgement signal from the target device at the first known-position device and at the second known-position device; determining the position of the target device using first timing information associated with the first measurement signal and the first acknowledgement signal, a first position of the first known-position device, and a second position of the second known-position device.
Abstract:
Disclosed are systems, methods and devices for application of determining position information for mobile devices. In specific implementations, measurement of a signal travel time and a signal's strength may be combined to characterize a transmission power of the signal's transmitter. The characterized transmission power may be applied to affect expected signal strength signature values for use of the signal's transmitter may be updated in order to enhance a location based service where location may be effected by accuracy of a transmitter's power.
Abstract:
Example methods, apparatuses, or articles of manufacture are disclosed herein that may be utilized, in whole or in part, to facilitate or support one or more navigation or positioning operations or techniques using, for example, a non-map-based location or routing interface for use in or with mobile communication devices.
Abstract:
The disclosure generally relates to position sensors, and more particularly to repair of carrier-phase cycle slips using displacement data. An apparatus for use in position sensing may include a displacement sensor, a positioning signal receiver, a memory, and a processor coupled to the displacement sensor, the positioning signal receiver, and the memory. The processor and memory may be configured to processor and memory are configured to detect a loss of lock of a first carrier tracking loop associated with the first set of carrier-phase measurements, wherein the first carrier tracking loop is associated with a first integer ambiguity, estimate, based on the displacement data, an ambiguity increment to the first integer ambiguity subsequent to the detected loss of lock, and resolve a second integer ambiguity associated with the second set of positioning signals based on the first integer ambiguity and the estimated ambiguity increment.