Abstract:
The present disclosure relates generally to uplink procedures on a shared communication medium. In an aspect, an access terminal receives a downlink subframe from an access point on the shared communication medium and, in response to receiving the downlink subframe, transmits uplink control information (UCI) for the downlink subframe on a first uplink subframe of a first UCI channel of a plurality of UCI channels.
Abstract:
Techniques are provided for efficient handover of a user equipment (UE) between base stations that operate using different radio access technologies (RATs). A handover message to a UE may indicate that the UE is to be handed over from a source base station operating according to a first RAT to a target base station operating according to a second RAT. The handover message may be configured to be transmitted using the first RAT and include embedded information, that is transparent to the first RAT, for the handover to the target base station using the second RAT.
Abstract:
Techniques for channel configuration on a shared communication medium are disclosed. An access point may select a set of resource elements to carry an uplink control channel and transmit a configuration message including one or more configuration parameters associated with the selected set of resource elements to one or more access terminals. The access point may then receive uplink control signaling from the one or more access terminals via the selected set of resource elements. An access terminal may receive a configuration message including one or more configuration parameters for an uplink control channel from an access point and determine a set of resource elements configured to carry the uplink control channel based on the configuration message. The access terminal may then transmit uplink control signaling to the access point via the determined set of resource elements.
Abstract:
Co-existence mechanisms for shared spectrum and unlicensed spectrum are disclosed. Several base stations, from one or more network operators, share a communication spectrum in a base non-contention procedure state. When a given base station determines that communications with its served user equipments (UEs) suffers a diminished quality, the base station transmits a diminished quality indicator in response. Subsequent communications with the served UEs over the shared spectrum would then occur using a contention-based procedure state triggered by the diminished quality indicator. The triggering of the contention-based procedure may be made by the base station on either sending the diminished quality indicator or receiving a similar indicator from a neighbor base station, or by an indication from a central controller making a determination to initiate contention-based procedures based on flags received from the neighboring base stations.
Abstract:
Methods and apparatus for communication comprise aspects that include performing a power management procedure for configuring a subset of network entities to receive one or more of downlink signal measurements and/or one or more uplink signal measurements. The methods and apparatus further comprise aspects that include storing the one or more one or more of downlink signal measurements and/or one or more uplink signal measurements associated with the subset of network entities at a database for managing transmit power at the subset of network entities. Moreover, the methods and apparatus comprise aspects that include adjusting a transmit power value of at least one of the subset of network entities from a first transmit power value to a second transmit power value based at least in part on the one or more of downlink signal measurements and/or one or more uplink signal measurements.
Abstract:
Described herein are techniques for link adaptation at an access point enabled for coordinated scheduling. For example, the technique may involve determining a resource-allocation profile (RAP) for the access point, wherein the RAP is based on a set of statistics associated with channel conditions for mobile devices. The technique may involve determining a plurality of link adaptation instances configured for managing interference, each link adaptation instance being associated with an interference condition. The technique may involve for each link adaptation instance, updating the link adaptation instance based on statistics associated with the interference condition.
Abstract:
A method for reducing frequent idle handoffs of a wireless communication device is described. A registration request is received by a base station or a femto access point from the wireless communication device. The number of registration requests received from the wireless communication device are counted while the registration timer is running. It is determined that frequent handoffs are happening when the number of registration requests received is greater than a registration threshold. A transmit power of a femto access point is adjusted if the number of registration requests received indicates that frequent handoffs are happening.
Abstract:
Aspects of the methods and apparatus relate to exploiting the spectrum of a high power base station cell to provide higher capacity in a wireless communication system. Generally, a small cell with multi-carrier support may detect an absence of high power base station cell coverage or absence of high power base station cell users and may harness the high power base station cell carrier spectrum to provide higher data download rates and/or serve more mobility users. Specifically, aspects of the methods and apparatus include transmitting a first signal on a first carrier from a first access point and determining a current ability of a second access point on a second carrier. Thereafter, aspects of the methods and apparatus include transmitting a second sit-mat on the second carrier from the first access point according to the determined current ability of the second access point.
Abstract:
A system for optimizing mobility robustness is operable by a network entity that detects handovers or connection failures by served access terminals. The network entity defines classifications based on mobility, route, past serving cell, or location information for the served access terminals and associates each of the handovers or connection failures with a related classification. A system for improving handover performance records a time for which an access terminal is served by the network entity before being served by a neighboring cell. A performance metric is determined based on the recorded time and a handover policy is optimized based on the performance metric.
Abstract:
Techniques for autonomous handover signaling on a shared communication medium are disclosed. An access terminal may receive, from an access point, one or more configuration messages configuring the access terminal for autonomous handover and including a parameter defining one or more autonomous handover triggering events. The access point may perform one or more mobility measurements on a communication medium and monitor for the one or more autonomous handover triggering events based on the one or more mobility measurements. The access terminal may perform an autonomous handover from a source access point to a target access point based on the monitoring.