Abstract:
An image sensor includes a photodiode disposed in semiconductor material to accumulate image charge in response to light directed through a back side of the semiconductor material. A scattering structure is disposed proximate to the front side of the semiconductor material such that the light that is directed into the semiconductor material through the back side is scattered back through the photodiode. A deep trench isolation structure is disposed in the semiconductor material that isolates the photodiode and defines an optical path such that the light that is scattered back through the photodiode in the optical path is totally internally reflected by the DTI. An antireflective coating is disposed on the back side of the semiconductor material and totally internally reflects the light scattered by the scattering structure to confine the light to remain in the optical path until it is absorbed.
Abstract:
A pixel cell includes a storage transistor disposed in a semiconductor substrate. The storage transistor includes a storage gate disposed over the semiconductor substrate, and a storage gate implant that is annealed and has a gradient profile in the semiconductor substrate under the storage transistor gate to store image charge accumulated by a photodiode disposed in the semiconductor substrate. A transfer transistor is disposed in the semiconductor substrate and is coupled between the photodiode and an input of the storage transistor to selectively transfer the image charge from the photodiode to the storage transistor. The transfer transistor includes a transfer gate disposed over the semiconductor substrate. An output transistor is coupled to an output of the storage transistor to selectively transfer the image charge from the storage transistor to a read out node. The output transistor includes an output gate disposed over the semiconductor substrate.
Abstract:
A single photon avalanche diode (SPAD) includes an n doped epitaxial layer disposed in a first semiconductor layer. A p doped epitaxial layer is above the n doped epitaxial layer on a back side of the first semiconductor layer. A multiplication junction is defined at an interface between the n doped epitaxial layer and the p doped epitaxial layer. A multiplication junction is reversed biased above a breakdown voltage such that a photon received through the back side of the first semiconductor layer triggers an avalanche multiplication process in the multiplication junction. A p− doped guard ring region is implanted in the n doped epitaxial layer surrounding the multiplication junction.