Abstract:
The present invention provides an amplifier circuit, wherein the amplifier circuit includes an input terminal, a capacitor, an amplifier, a feedback circuit and an aliasing tone cancellation circuit. The input terminal is configured to receive a first input signal. The capacitor is coupled to the input terminal. The amplifier is configured to receive the input signal through the capacitor to generate an output signal. The feedback circuit is coupled between an input node and an output node of the amplifier, and is configured to generate a feedback signal according to the output signal, wherein the feedback circuit includes a storage block including a switched-capacitor. The aliasing tone cancellation circuit is coupled between the input terminal of the amplifier circuit and the input node of the amplifier, and configured to generate a signal to cancel or reduce an aliasing tone of the feedback signal according to the input signal.
Abstract:
A digital-to-analog conversion circuit is used for converting a first digital input into a first analog output, and includes a segmentation circuit, a plurality of multi-bit dynamic element matching digital-to-analog converters (DEM DACs), and a combination circuit. The segmentation circuit applies segmentation to the first digital input to generate a plurality of code segments. The multi-bit DEM DACs convert the code segments into a plurality of DAC outputs, respectively, wherein the multi-bit DEM DACs include at least a first multi-bit DEM DAC and a second multi-bit DEM DAC, and the first multi-bit DEM DAC and the second multi-bit DEM DAC employ different DEM techniques. The combination circuit combines the DAC outputs to generate the first analog output.
Abstract:
The present invention provides a class-G amplifier, wherein the class-G amplifier includes an amplifier stage, an impedance detector and a power source. In the operations of the class-G amplifier, the amplifier stage is supplied by a supply voltage, and amplifies an input audio signal to generate an output audio signal, and the impedance detector is configured to detect an output impedance of the amplifier stage to generate a detection result, and the power source refers to the detection result to determine a level and a switching frequency of the supply voltage.
Abstract:
A digital-to-analog conversion circuit is used for converting a first digital input into a first analog output, and includes a segmentation circuit, a plurality of multi-bit dynamic element matching digital-to-analog converters (DEM DACs), and a combination circuit. The segmentation circuit applies segmentation to the first digital input to generate a plurality of code segments. The multi-bit DEM DACs convert the code segments into a plurality of DAC outputs, respectively, wherein the multi-bit DEM DACs include at least a first multi-bit DEM DAC and a second multi-bit DEM DAC, and the first multi-bit DEM DAC and the second multi-bit DEM DAC employ different DEM techniques. The combination circuit combines the DAC outputs to generate the first analog output.
Abstract:
An impedance circuit includes a poly-resistor and a controller. The poly-resistor has a first terminal and a second terminal. The controller generates a first control voltage and a second control voltage. The resistance between the first terminal and the second terminal of the poly-resistor is determined according to the first control voltage and the second control voltage. The second control voltage is different from the first control voltage. The proposed impedance circuit can improve the linearity of the poly-resistor.
Abstract:
A calibration method for a vibration module includes transmitting a plurality of vibration signals corresponding to a plurality of vibration frequencies to the vibration module and detecting a plurality of input currents or input power levels of the vibration module corresponding to the plurality of vibration frequencies; and determining a vibration point of the vibration module according to the plurality of input currents or input power levels.
Abstract:
An electronic device includes an impedance detection circuit and a processor. The impedance detection circuit is configured for receiving a test signal, processing the test signal and detecting an impedance of a headphone speaker load by using the test signal to generate a detection result. The processor is coupled to the impedance detection circuit and configured for providing the test signal to the impedance detection circuit, receiving the detection result from the impedance detection circuit, and adjusting a voltage of an audio signal to be provided to the headphone speaker load according to the detection result.
Abstract:
A programmable amplifier circuit includes an amplifier, an input capacitor coupled to an input of the amplifier, a feedback capacitor coupled to the input of the amplifier and an output of the amplifier, and a switched-capacitor resistor circuit. The switched-capacitor resistor circuit is coupled between the input of the amplifier and the output of the amplifier, and configured for simulating a feedback resistor element to provide a resistance for a feedback path of the amplifier by using at least one capacitor placed between the input of the amplifier and the output of the amplifier to avoid leakage current(s) flowing back to an input of the amplifier.
Abstract:
A calibration method for a vibration module includes transmitting a plurality of vibration signals corresponding to a plurality of vibration frequencies to the vibration module and detecting a plurality of input currents or input power levels of the vibration module corresponding to the plurality of vibration frequencies; and determining a vibration point of the vibration module according to the plurality of input currents or input power levels.