Abstract:
The present invention discloses a method and an apparatus for reporting channel state information. According to one embodiment of the present invention, receiving a channel state information-reference signal (CSI-RS) based on CSI-RS setting information that is provided by a base station; and reporting to the base station the CSI generated by using the CSI-RS, wherein the CSI includes precoding information selected from a specific codebook, wherein elements of the specific codebook are configured based on a precoding vector W, wherein the precoding vector W is W = [ W 1 aW 2 ] , W1 is a precoding vector applied to a first domain antenna group having a 2D antenna structure, W2 is a precoding vector applied to a second domain antenna group having the 2D antenna structure, and wherein “a” can be a value representing phase difference between the first domain antenna group and the second domain antenna group.
Abstract:
A method and apparatus for transmitting a downlink signal in a wireless communication system are disclosed. An apparatus for receiving a downlink (DL) signal from a base station (BS) and transmitting the received DL signal to a user equipment (UE) in a wireless communication includes: a plurality of reception antennas configured to receive DL signals from the BS; a processor configured to map the received DL signals to at least one transmission antenna; and a plurality of transmission antennas configured to transmit the received DL signals to the UE, wherein the processor is configured to select M transmission antenna(s) from among the plurality of transmission antennas (Ntx,REP Tx antennas), and map the received L signals to the M transmission antenna(s), and the number of the transmission antennas (Ntx,REP) is higher than the number of the reception antennas (Nrx,REP), and M is the number of the transmission antennas which is used to transmit the received DL signals.
Abstract:
A method for measuring, by a terminal, the location of a terminal in a wireless network according to the present invention includes the steps of: determining based on a received signal whether the number of access points (APs) that transmit the signal is three or more; storing location information on a first AP obtained based on the received signal and distance information between the terminal and the first AP at a point receiving the signal if the number of the APs is less than three; measuring a travel distance and a travel direction according to the movement of the terminal from the point receiving the signal; obtaining, based on the signals received from a second and a third AP, location information on the second and third APs and distance information between the terminal and each of the second and third APs at the current point, if it is determined that the number of the APs that transmit signals from the current point according to the movement to the terminal is three or more; and calculating the location of the current point of the terminal based on the distance information between the terminal and each of the second and third APs at the current point, distance information between the terminal and the first AP, and the measured travel distance and the measured travel direction.
Abstract:
The present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transceiving a downlink control channel. According to one embodiment of the present invention, a method in which a base station transmits a downlink control channel to a terminal in a wireless communication system comprises the steps of: transmitting one or more enhanced-physical downlink control channels (E-PDCCHs) within a resource region allocable for an E-PDCCH; and transmitting E-PDCCH allocation resource information for the one or more E-PDCCHs to the terminal. The E-PDCCH allocation resource information indicates the resource in which the one or more E-PDCCHs exist from among the resource region allocable to the E-PDCCH. An effective physical downlink shared channel (PDSCH) allocation resource region for the terminal can be determined on the basis of the E-PDCCH allocation resource information.
Abstract:
A positioning method of estimating a location of a user equipment (UE) in a wireless network is disclosed. The positioning method includes performing positioning using a global positioning system (GPS)-based signal, checking whether the UE is located indoors based on received signal intensity of the GPS-based signal, and changing a positioning method using the GPS-based signal to a positioning method using a local area network (LAN)-based signal when it is determined that the UE is located indoors, and performing a positioning using the changed positioning method using the LAN-based signal.
Abstract:
A method for transmitting channel state information by a terminal comprises the step of: receiving relation information on a CSI-RS and a physical antenna from a base station by the terminal, the relation information including information on a first CSI-RS and a first physical antenna transmitting the first CSI-RS and information on a second CSI-RS and a second physical antenna transmitting the second CSI-RS; and transmitting first channel state information and second channel state information to the base station on the basis of the relation information by the terminal.
Abstract:
A method for transmitting signals to a user equipment at a base station in a wireless communication system is disclosed. The method includes generating a user equipment specific reference signal sequence for the user equipment, determining transmission resources for mapping the user equipment specific reference signal sequence, based on a vertical sector in which the user equipment is located, mapping the user equipment specific reference signal sequence to the determined transmission resources, and transmitting the user equipment specific reference signal sequence to the user equipment using a second-dimensional planar antenna.
Abstract:
The present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transceiving a downlink control channel. According to one embodiment of the present invention, a method in which a base station transmits a downlink control channel to a terminal in a wireless communication system comprises the steps of: transmitting one or more enhanced-physical downlink control channels (E-PDCCHs) within a resource region allocable for an E-PDCCH; and transmitting E-PDCCH allocation resource information for the one or more E-PDCCHs to the terminal. The E-PDCCH allocation resource information indicates the resource in which the one or more E-PDCCHs exist from among the resource region allocable to the E-PDCCH. An effective physical downlink shared channel (PDSCH) allocation resource region for the terminal can be determined on the basis of the E-PDCCH allocation resource information.
Abstract:
A multiple distributed system is disclosed. An uplink control resource allocation method for a user equipment to transmit an Acknowledgement/Negative ACK (ACK/NACK) signal includes receiving one or more Enhanced-Physical Downlink Control Channels (E-PDCCHs), receiving one or more Physical Downlink Shared Channels (PDSCHs) corresponding to the one or more E-PDCCHs, and transmitting ACK/NACK signals for reception of the one or more PDSCHs through a Physical Uplink Control Channel (PUCCH), wherein Control Channel Element (CCE) indexes of the PUCCH transmitting the ACK/NACK signals are determined in consideration of first CCE indexes of the one or more E-PDCCHs and the number of CCEs of a PUCCH determined by a higher layer.
Abstract:
The present invention relates to a wireless communication system, and more specifically, disclosed are a method and an apparatus for virtualizing an antenna. A method for communicating using a virtual antenna of a terminal in the wireless communication system, according to one embodiment of the present invention, comprises the steps of: configuring one or more virtual antennas according to an antenna virtualization pattern that is determined based on information indicating a movement status of the terminal and/or information indicating a communication status of the terminal; and communicating with the base station by using the one or more virtual antennas, wherein one or more physical antennas that are mapped to the one or more virtual antennas can be determined base on the direction of movement of the terminal.