Abstract:
A metal source power transistor device and method of manufacture is provided, wherein the metal source power transistor having a source which is comprised of metal and which forms a Schottky barrier with the body region and channel region of the transistor. The metal source power transistor is unconditionally immune from parasitic bipolar action and, therefore, the effects of snap-back and latch-up, without the need for a body contact. The ability to allow the body to float in the metal source power transistor reduces the process complexity and allows for more compact device layout.
Abstract:
Systems and methods are provided for optimizing a parametrization scheme in accordance with information about the surface signal. A surface parametrization is created to store a given surface signal into a texture image. The signal-specialized metric of the invention minimizes signal approximation error, i.e., the difference between the original surface signal and its reconstruction from the sampled texture. A signal-stretch parametrization metric is derived based on a Taylor expansion of signal error. For fast evaluation, the metric of the invention is pre-integrated over the surface as a metric tensor. The resulting parametrizations have increased texture resolution in surface regions with greater signal detail. Compared to traditional geometric parametrizations, the number of texture samples can often be reduced by a significant factor for a desired signal accuracy.
Abstract:
A text to XML transformer has a transformer program having a number of executable statements. A processor executes the transformer program and converts the input text document into an XML document. The XML document may not contain every element that was in the input text.
Abstract:
The described systems and methods are directed at interactively rendering graphics using precomputed radiance transfer (PRT). A reflectance matrix that represents the reflectance of a particular object to be rendered is determined. Source lighting associated with the object is represented using basis functions. The reflectance matrix is factored into view and light components. A raw transfer matrix is determined based, in part, from the factored reflectance matrix and the source lighting. The raw transfer matrix is partitioned to obtain transfer matrices, which are used to render the object. The described systems and methods are capable of rendering glossy objects with well-defined shadows.
Abstract:
The present invention is directed to a enhanced Precomputed Radiance Transfer (PRT) system employing an algorithm to compute a PRT signal over a surface mesh and subdividing facets of the mesh to increase the number of surface vertices such that the spatial variation of the transfer signal is resolved sufficiently everywhere on the surface. The method of this system ensures that radiance transfer shading produces colors of sufficient accuracy all over the surface. In certain embodiments, transfer is computed only at surface vertices, although this does result in a certain amount of acceptable aliasing and blurring of surface lighting detail in regions where the tessellation is too coarse. Furthermore, the method comprises a spatial and density sampling techniques that measures the transfer signal to a desirable appropriate resolution while minimizing aliasing. Once computed, the signal is represented as compactly as possible to minimize storage and runtime computation requirements.
Abstract:
A layered graphics rendering pipeline measures image fidelity ("fiducials") to determine how accurately a transformed image layer approximates a rendering of a 3D object. The graphics rendering pipeline approximates the change in position or color of 3D object by transforming a rendering of the 3D object from a previous frame. The pipeline uses the fiducials to control rendering of factored scene elements to independent image layers. The pipeline then combines the layers to compute frames of animation. The types of fiducials include sampling, visibility, and photometric fiducials. The sampling fiducial measures the distortion of an image sample when warped to screen coordinates. The visibility fiducial measures the change in visibility of a scene element since a previous rendering of the scene element. The photometric fiducial measures either the change in lighting from the time of the previous rendering to the current time, or it measures the difference between warped color samples and actual color samples of the scene element for a current frame.
Abstract:
A dense guide image or signal is used to inform the reconstruction of a target image from a sparse set of target points. The guide image and the set of target points are assumed to be derived from a same real world subject or scene. Potential discontinuities (e.g., tears, edges, gaps, etc.) are first detected in the guide image. The potential discontinuities may be borders of Voronoi regions, perhaps computed using a distance in data space (e.g., color space). The discontinuities and sparse set of points are used to reconstruct the target image. Specifically, pixels of the target image may be interpolated smoothly between neighboring target points, but where neighboring target points are separated by a discontinuity, the interpolation may jump abruptly (e.g., by adjusting or influencing relaxation) at the discontinuity. The target points may be used to select only a subset of the discontinuities to be used during reconstruction.
Abstract:
Systems and methods of fabricating silicon-based thin film transistors (TFTs) on flexible substrates. The systems and methods incorporate and combine deposition processes such as chemical vapor deposition and plasma-enhance vapor deposition, printing, coating, and other deposition processes, with laser annealing, etching techniques, and laser doping, all performed at low temperatures such that the precision, resolution, and registration is achieved to produce a high performing transistor. Such TFTs can be used in applications such as displays, packaging, labeling, and the like.
Abstract:
Techniques and tools for mesh processing are described. For example, a multi-chart geometry image represents arbitrary surfaces on object models. The multi-chart geometry image is created by resampling a surface onto a regular 2D grid, using a flexible atlas construction to map the surface piecewise onto charts of arbitrary shape. This added flexibility reduces parameterization distortion and thus provides greater geometric fidelity, particularly for shapes with long extremities, high genus, or disconnected components. As another example, zippering creates a watertight surface on reconstructed triangle meshes. The zippering unifies discrete paths of samples along chart boundaries to form the watertight mesh.
Abstract:
A lift-assisted manhole cover assembly with a flush surface and external pivot shaft. The cover includes a mounting tab that extends beyond the general periphery of the cover. The mounting tab may be connected to a shaft that is threadedly engaged with the frame. A spring may be mounted between the frame and the mounting tab, for example, in a sleeve, to provide a mechanical assist in lifting the cover. The sleeve may be disposed outside the manhole opening where it does not block access to the manhole opening.