Abstract:
This invention relates to a catalyst compound comprising a combination of a cyclic alkyl amino carbene ligand and a benzylidene both attached to a Group 8 metal, preferably ruthenium atom.This invention also relates to a process to make linear alpha-olefins comprising contacting a feed material and an optional alkene (such as ethylene) with the catalyst described above, wherein the feed material is a triacylglyceride, fatty acid, fatty acid alkyl ester, and/or fatty acid ester, typically derived from seed oil (e.g., biodiesel).
Abstract:
This invention relates to a process to functionalize propylene co-oligomer comprising contacting an alkene metathesis catalyst with a heteroatom containing alkene, and a propylene a co-oligomer having an Mn of 300 to 30,000 g/mol comprising 10 to 90 mol % propylene and 10 to 90 mol % of ethylene, wherein the oligomer has at least X % allyl chain ends, where: 1) X=(−0.94 (mol % ethylene incorporated)+100), when 10 to 60 mol % ethylene is present in the co-oligomer, and 2) X=45, when greater than 60 and less than 70 mol % ethylene is present in the co-oligomer, and 3) X=(1.83*(mol % ethylene incorporated)−83), when 70 to 90 mol % ethylene is present in the co-oligomer. This invention also relates to a process to functionalize propylene homo-oligomer comprising contacting an alkene metathesis catalyst with a heteroatom containing alkene, and a propylene homo-oligomer, comprising propylene, wherein the oligomer has: at least 93% allyl chain ends, an Mn of about 500 to about 20,000 g/mol, an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.2:1.0, and less than 100 ppm aluminum.
Abstract:
This invention relates to a vinyl terminated higher olefin copolymer having an Mn of 300 g/mol or more (measured by 1H NMR) comprising: (i) from about 20 to about 99.9 mol % of at least one C5 to C40 higher olefin monomer; and (ii) from about 0.1 to about 80 mol % of propylene; wherein the higher olefin copolymer has at least 40% allyl chain ends. The copolymer may also have an isobutyl chain end to allyl chain end ratio of less than 0.7:1 and/or an allyl chain end to vinylidene chain end ratio of greater than 2:1.
Abstract:
This invention relates to a catalyst compound comprising a combination of a cyclic alkyl amino carbene ligand and a benzylidene both attached to a Group 8 metal, preferably ruthenium atom.This invention also relates to a process to make linear alpha-olefins comprising contacting a feed material and an optional alkene (such as ethylene) with the catalyst described above, wherein the feed material is a triacylglyceride, fatty acid, fatty acid alkyl ester, and/or fatty acid ester, typically derived from seed oil (e.g., biodiesel).
Abstract:
This invention relates to a process to functionalize propylene co-oligomer comprising contacting an alkene metathesis catalyst with a heteroatom containing alkene, and a propylene a co-oligomer having an Mn of 300 to 30,000 g/mol comprising 10 to 90 mol % propylene and 10 to 90 mol % of ethylene, wherein the oligomer has at least X % allyl chain ends, where: 1) X=(−0.94 (mol % ethylene incorporated)+100), when 10 to 60 mol % ethylene is present in the co-oligomer, and 2) X=45, when greater than 60 and less than 70 mol % ethylene is present in the co-oligomer, and 3) X=(1.83*(mol % ethylene incorporated)−83), when 70 to 90 mol % ethylene is present in the co-oligomer. This invention also relates to a process to functionalize propylene homo-oligomer comprising contacting an alkene metathesis catalyst with a heteroatom containing alkene, and a propylene homo-oligomer, comprising propylene, wherein the oligomer has: at least 93% allyl chain ends, an Mn of about 500 to about 20,000 g/mol, an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.2:1.0, and less than 100 ppm aluminum.
Abstract:
The invention relates to a process for producing a complex for use in olefin polymerization and oligomerization of the general formula (III): wherein Mt is a group 3 to 12 element in a +2 to +6 oxidation state with between 1 to 4 additional ligands (anionic and/or neutral) coordinated, wherein R1 and R2 are hydrogen, halogen, alkoxy, or a hydrocarbon group containing between 1 to 12 carbon atoms; E is a group 16 element, preferably O; Z is a direct bond between carbon atoms of the adjacent aromatic rings or a —CR3R4— or —SiR3R4— bridge between those carbon atoms, where R3 and R4 are hydrogen or a hydrocarbon groups with 1 to 10 carbons, R5, R6, R7 and R8 are hydrogen, halogen, alkoxy, or a hydrocarbon group containing between 1 to 10 carbon atoms and J1 and J2 are —NR9R10 or —PR9R10, where R9 is H or SiMe3 group and R10 is selected from a group consisting of alkyl, aryl, substituted aryl, heteroalkyl, and heteroaryl containing between 1 to 30 non-hydrogen atoms through a route involving novel precursors such as compounds represented by the general formula (I) where the various substitution options are adapted to produce the substituents shown for formula (III) above.
Abstract:
This invention relates to higher olefin vinyl terminated polymers having an Mn of at least 200 g/mol (measured by 1H NMR) including of one or more C4 to C40 higher olefin derived units, where the higher olefin vinyl terminated polymer comprises substantially no propylene derived units; and wherein the higher olefin polymer has at least 5% allyl chain ends and processes for the production thereof. These vinyl terminated higher olefin polymers may optionally include ethylene derived units.
Abstract:
This invention relates to a vinyl terminated higher olefin copolymer having an Mn of 300 g/mol or more (measured by 1H NMR) comprising: (i) from about 20 to about 99.9 mol % of at least one C5 to C40 higher olefin monomer; and (ii) from about 0.1 to about 80 mol % of propylene; wherein the higher olefin copolymer has at least 40% allyl chain ends. The copolymer may also have an isobutyl chain end to allyl chain end ratio of less than 0.7:1 and/or an allyl chain end to vinylidene chain end ratio of greater than 2:1.
Abstract:
This invention relates to a process for producing a polymer of a cyclic olefin and a linear mono-olefin, the process comprising contacting at least one C5 based cyclic olefin with at least one linear mono-olefin having from two to twenty carbon atoms in the presence of an alkene metathesis catalyst, and the polymer so produced.
Abstract:
This invention relates to higher olefin vinyl terminated polymers having an Mn of at least 200 g/mol (measured by 1H NMR) including of one or more C4 to C40 higher olefin derived units, where the higher olefin vinyl terminated polymer comprises substantially no propylene derived units; and wherein the higher olefin polymer has at least 5% allyl chain ends and processes for the production thereof. These vinyl terminated higher olefin polymers may optionally include ethylene derived units.