Abstract:
Electronic devices may be provided that include mechanical and electronic components. Connectors may be used to interconnect printed circuits and devices mounted to printed circuits. Printed circuits may include rigid printed circuit boards and flexible printed circuit boards. Heat sinks and other thermally conductive structures may be used to remove excess component heat. Structures may also be provided in an electronic device to detect moisture. Integrated circuits and other circuitry may be mounted on a printed circuit board under a radio-frequency shielding can.
Abstract:
Electronic devices may be provided that include mechanical and electronic components. Connectors may be used to interconnect printed circuits and devices mounted to printed circuits. Printed circuits may include rigid printed circuit boards and flexible printed circuit boards. Cosmetic structures such as cowlings may be used to improve device aesthetics. Bumpers may be mounted over rough edges of printed circuit boards to protect flex circuits that are routed over the printed circuit boards. Fasteners may be soldered to solder pad structures on printed circuit boards.
Abstract:
Receptacle connectors and male plug connectors having a reduced size in at least one direction can be provided. One example reduces height by not including a center contact tab or tongue, but instead places contacts on an insulator that is adjacent to a bottom portion of the receptacle. Another example may reduce width by reducing contact pitch, and may use a particular shape of contact to achieve god signal quality. Receptacle connectors and male plug connectors can also provide support for one or more new high-speed communication standards, such as USB 3.0 and DisplayPort. Methods can provide one or more standardized connector components to speed connector design and manufacture of new electronic devices such as media players, thus reducing their time to market.
Abstract:
A constraint mechanism for receiving an audio plug in an electronic device is provided. The constraint mechanism may include a conductive tube operative to receive the audio plug. In addition, the constraint mechanism may include several features operative to engage corresponding features of the electronic device to prevent the constraint mechanism from moving in any direction (e.g., which could cause damage in the electronic device if the audio jack was forced to move by an impact on the audio plug). For example, the constraint mechanism may include a center wall to prevent yawing, and rear tabs to prevent pitching. As another example, the constraint mechanism may include a side plate operative to be coupled to the electronic device to prevent rolling. In some embodiments, the constraint mechanism may include an asymmetrical tube entrance for ensuring the proper alignment of the constraint mechanism with an electronic device opening. The tube may include a conductive dimple extending through an aperture of the tube, where the aperture is substantially the same size and shape as the conductive dimple.
Abstract:
A battery assembly for use in an electronic device is provided. The battery assembly may include a battery cell (e.g., a rechargeable battery cell), a battery connector for providing power from the battery cell to the electronic device, and a flex circuit electrically coupling the battery cell to the electronic device. The battery connector may be located adjacent the battery cell, and may include one or more alignment mechanisms for ensuring that conductive pads of the battery connector align properly with corresponding conductive elements of the electronic device. The battery cell may be fixed to the electronic device using an adhesive layer (e.g., double sided tape) placed between the cell and the electronic device. A tab may extend beyond the periphery of the battery cell to allow a user to pull or peal the battery cell from the electronic device for replacement or repair. In some embodiments, a tool may be used to grasp the tab.
Abstract:
A portable electronic device may have a dock connector moisture infiltration indication structure for indicating whether moisture has infiltrated the device. The structure may be located within a dock connector port. The dock connector may have a viewing hole that enables viewing of the moisture indicator. The moisture indicator may have four layers: upper and lower moisture barriers, a wicking layer and a dyeing layer. After becoming wet, the moisture indicator may change from one color to another color. A menu button in the device may have a transparent and opaque member with a viewing aperture. A moisture indicator may be formed on the button and may be viewed through the viewing aperture.