APPARATUS AND METHODS FOR THREE-DIMENSIONAL POSE ESTIMATION

    公开(公告)号:US20230298204A1

    公开(公告)日:2023-09-21

    申请号:US18000389

    申请日:2020-06-26

    Abstract: Apparatus and methods for three-dimensional pose estimation are disclosed herein. An example apparatus includes an image synchronizer to synchronize a first image generated by a first image capture device and a second image generated by a second image capture device, the first image and the second image including a subject; a two-dimensional pose detector to predict first positions of keypoints of the subject based on the first image and by executing a first neural network model to generate first two-dimensional data and predict second positions of the keypoints based on the second image and by executing the first neural network model to generate second two-dimensional data; and a three-dimensional pose calculator to generate a three-dimensional graphical model representing a pose of the subject in the first image and the second image based on the first two-dimensional data, the second two-dimensional data, and by executing a second neural network model.

    Multi-cam ball location method and apparatus

    公开(公告)号:US11763467B2

    公开(公告)日:2023-09-19

    申请号:US17255837

    申请日:2018-09-28

    Abstract: A multi-camera architecture for detecting and tracking a ball in real-time. The multi-camera architecture includes network interface circuitry to receive a plurality of real-time videos taken from a plurality of high-resolution cameras. Each of the high-resolution cameras simultaneously captures a sports event, wherein each of the plurality of high-resolution cameras includes a viewpoint that covers an entire playing field where the sports event is played. The multi-camera architecture further includes one or more processors coupled to the network interface circuitry and one or more memory devices coupled to the one or more processors. The one or more memory devices includes instructions to determine the location of the ball for each frame of the plurality of real-time videos, which when executed by the one or more processors, cause the multi-camera architecture to simultaneously perform one of a detection scheme or a tracking scheme on a frame from each of the plurality of real-time videos to detect the ball used in the sports event and perform a multi-camera build to determine a location of the ball in 3D for the frame from each of the plurality of real-time videos using one of detection or tracking results for each of the cameras.

    CONDITIONAL KERNEL PREDICTION NETWORK AND ADAPTIVE DEPTH PREDICTION FOR IMAGE AND VIDEO PROCESSING

    公开(公告)号:US20220207656A1

    公开(公告)日:2022-06-30

    申请号:US17483074

    申请日:2021-09-23

    Abstract: Embodiments are generally directed to a Conditional Kernel Prediction Network (CKPN) for image and video de-noising and other related image and video processing applications. Disclosed is an embodiment of a method for de-noising an image or video frame by a convolutional neural network implemented on a compute engine, the image including a plurality of pixels, the method comprising: for each of the plurality of pixels of the image, generating a convolutional kernel having a plurality of kernel weights for the pixel, the plurality of kernel weights respectively corresponding to pixels within a region surrounding the pixel; adjusting the plurality of kernel weights of the convolutional kernel for the pixel based on convolutional kernels generated respectively for the corresponding pixels within the region surrounding the pixel; and filtering the pixel with the adjusted plurality of kernel weights and pixel values of the corresponding pixels within the region surrounding the pixel to obtain a de-noised pixel.

    Convolutional neural network framework using reverse connections and objectness priors for object detection

    公开(公告)号:US11188794B2

    公开(公告)日:2021-11-30

    申请号:US16630419

    申请日:2017-08-10

    Abstract: A convolutional neural network framework is described that uses reverse connection and obviousness priors for object detection. A method includes performing a plurality of layers of convolutions and reverse connections on a received image to generate a plurality of feature maps, determining an objectness confidence for candidate bounding boxes based on outputs of an objectness prior, determining a joint loss function for each candidate bounding box by combining an objectness loss, a bounding box regression loss and a classification loss, calculating network gradients over positive boxes and negative boxes, updating network parameters within candidate bounding boxes using the joint loss function, repeating performing the convolutions through to updating network parameters until the training converges, and outputting network parameters for object detection based on the training images.

Patent Agency Ranking