Abstract:
Various embodiments of the present invention provide a pilot resource allocation method, where the method includes: determining, according to an aggregation level and multiplexing information of an enhanced control channel element E-CCE in a resource block pair, the number of resource elements REs that are allocated to and occupied by a demodulation pilot signal DMRS in the resource block pair. Various embodiments of the present invention further provide a corresponding user equipment. By implementing the method and device, the efficiency of time-frequency resource utilization can be improved.
Abstract:
A method and an apparatus for sending a Precoding Matrix Index (PMI) and performing precoding are provided in the embodiments of the present invention. The method for sending the PMI comprises the following steps: a user equipment acquires the transmission channel capability of carrying the PMI; according to the transmission channel capability of carrying the PMI, the precoding matrices are selected from a locally-stored first codebook set to form a second codebook set; a first precoding matrix is selected from the second codebook set; an index corresponding to the first precoding matrix is sent to a base station over the transmission channel so as to make the base station can find out the first precoding matrix according to the index and precode the data according to the first precoding matrix. The embodiments of the present invention can realize the flexible configuration and use of the PMI.
Abstract:
This application relates to the mobile communications field, and in particular, to a random access technology in a wireless communications system. This application provides a method for receiving a random access preamble sequence, an apparatus, and a system. In this solution, a device obtains a cyclic shift value that satisfies a high-speed movement scenario and receives a random access preamble sequence corresponding to the cyclic shift value.
Abstract:
A method includes determining a type of a first subframe, where the type of the first subframe is a first-type subframe, a second-type subframe, a third-type subframe, or a fourth-type subframe, where the second-type subframe includes an uplink control channel and a downlink channel, the uplink control channel is located after the downlink channel, and there is a guard period between the uplink control channel and the downlink channel. The fourth-type subframe includes an uplink channel and a downlink control channel, the uplink channel is located after the downlink control channel, and there is a guard period between the uplink channel and the downlink control channel. The method also includes transmitting data in the first subframe according to the type of the first subframe.
Abstract:
This application relates to the mobile communications field, and in particular, to a random access technology in a wireless communications system. This application provides a method for sending a random access preamble sequence, an apparatus, and a system. In this solution, a terminal device obtains a cyclic shift value that satisfies a high-speed movement scenario and sends a random access preamble sequence corresponding to the cyclic shift value. Impact brought by the high-speed movement scenario is considered when the random access preamble sequence is determined, thereby avoiding interference between terminal devices in the high-speed scenario.
Abstract:
The present invention provides a signal sending apparatus, a signal detection apparatus, a signal sending and detection system, a signal sending method, and a signal detection method. The apparatus determines a time unit that is in each time window and that is used to transmit a synchronization signal, and transmits the synchronization signal in the determined time unit in each time window. Therefore, a synchronization signal is always located in a time unit that has a fixed location in each time window, so that a device at a receive end needs to perform detection only in a fixed time unit in each time window, thereby reducing complexity of designing and detecting the synchronization signal.
Abstract:
The method includes determining a type of a first subframe, where the type of the first subframe is a first-type subframe, a second-type subframe, a third-type subframe, or a fourth-type subframe, where the second-type subframe includes an uplink control channel and a downlink channel, the uplink control channel is located after the downlink channel, and there is a guard period between the uplink control channel and the downlink channel. The fourth-type subframe includes an uplink channel and a downlink control channel, the uplink channel is located after the downlink control channel, and there is a guard period between the uplink channel and the downlink control channel. The method also includes transmitting data in the first subframe according to the type of the first subframe.
Abstract:
A method includes determining a type of a first subframe, where the type of the first subframe is a first-type subframe, a second-type subframe, a third-type subframe, or a fourth-type subframe, where the second-type subframe includes an uplink control channel and a downlink channel, the uplink control channel is located after the downlink channel, and there is a guard period between the uplink control channel and the downlink channel. The fourth-type subframe includes an uplink channel and a downlink control channel, the uplink channel is located after the downlink control channel, and there is a guard period between the uplink channel and the downlink control channel. The method also includes transmitting data in the first subframe according to the type of the first subframe.
Abstract:
In a system and method of control channel transmission in the communications field, REs, except those used for transmitting a DMRS, are grouped in each physical resource block pair of L physical resource block pairs. The L physical resource block pairs are determined to be used to transmit a control channel into N eREGs. The number of valid REs are calculated except other overheads in each eREG of the N eREGs. Each of the eCCEs are mapped onto M eREGs according to the number of valid REs included in each eREG of the N eREGs of each physical resource block pair. The eCCE is sent in the REs included in the eREG.
Abstract:
A transmit diversity method, a device, and a system are described herein. The method includes: measuring, by a second network device, channel state information based on a pilot signal, and sending rank index information and precoding matrix index information to a first network device based on the channel state information; receiving, by the first network device, the rank index information and the precoding matrix index information that are sent by the second network device; determining a diversity coding scheme based on the rank index information; determining a precoding matrix based on the precoding matrix index information; and performing transmission processing on to-be-transmitted data based on the diversity coding scheme and the precoding matrix.