Abstract:
The present invention relates to a transmission method for network management control information and a microwave device, where the method includes: receiving, by a first device, network management control information, where the network management control information is microwave parameter configuration information of a second device; generating, by the first device, a control signal according to the network management control information, and generating a to-be-sent radio frequency signal after baseband processing and radio frequency processing are performed on preset information; and performing, by the first device, modulation on the radio frequency signal by using the control signal, to obtain a parameter configuration signal, and sending the parameter configuration signal to the second device.
Abstract:
A method, a device, and a system for monitoring quality of an Internet access service of a mobile terminal are provided. The method includes collecting, by a mobile terminal, an IP data packet of an Internet access service, identifying, by the mobile terminal, an Internet access service type corresponding to the IP data packet, performing, by the mobile terminal, deep packet resolution on the IP data packet to obtain a resolution result, collecting statistics, by the mobile terminal, on a key quality indicator of the Internet access service corresponding to the Internet access service type according to the resolution result of the IP data packet, and uploading, by the mobile terminal, the key quality indicator obtained by means of statistics to a network server, so that the network server monitors quality of the Internet access service of the mobile terminal according to the key quality indicator.
Abstract:
A wearable device includes a conductive frame and a parasitic stub. A first ground point and a feed point are disposed on the frame. The parasitic stub has a first slot and a second slot. The parasitic stub and the frame each have a ring shape, and are spaced along a ring circumference. The parasitic stub is divided into a first parasitic part and a second parasitic part with approximately equal lengths by the first slot and the second slot.
Abstract:
Embodiments of this application disclose a tunnel establishment method. A first communication apparatus may receive first adjacency topology information sent by a second communication apparatus, and establish a first tunnel between the first communication apparatus and the second communication apparatus when the first adjacency topology information matches second adjacency topology information of the first communication apparatus. It can be learned that, in this solution, the first communication apparatus may locally store only the second adjacency topology information of the first communication apparatus. Compared with the conventional technology in which information about two endpoints of a tunnel needs to be configured on the first communication apparatus, configuration for the first communication apparatus is simpler.
Abstract:
A radiator sharing antenna and mobile terminal including the radiator sharing antenna includes a radiator divided into a first sub-radiator and a second sub-radiator by a gap, a first feeding point, and a second feeding point. A radio frequency signal is fed through the first feeding point on the first sub-radiator, and a radio frequency signal is fed through the second feeding point on the second sub-radiator. The radiator sharing antenna is adapted to generate a plurality of antenna operating bands through the resonance generated by the first sub-radiator and the second sub-radiator and the parasitic resonance generated through mutual influence between the first sub-radiator and the second sub-radiator.
Abstract:
An antenna, an antenna control method, and a terminal, where the antenna includes an antenna body and an antenna branch, where one end of the antenna branch is coupled to the antenna body, the other end is coupled to a feedpoint of a primary radio frequency channel, and the end of the antenna branch that is coupled to the feedpoint of the primary radio frequency channel is further coupled to the antenna body through a first adjustable device, where the first adjustable device is in an on state or an off state. An antenna branch is coupled between the feedpoint of the primary radio frequency channel and the antenna body, and the antenna branch is capable of coupling or decoupling by switching on or off the first adjustable device.
Abstract:
A terminal includes a first baseband processor, a second baseband processor, a first radio frequency chip, a second radio frequency chip, a first antenna, a second antenna, a third antenna, and a fourth antenna. The first baseband processor is coupled to the first antenna and the second antenna using the first radio frequency chip. The first radio frequency chip is coupled to the first antenna to form a first channel, and is coupled to the second antenna to form a second channel. The second baseband processor is coupled to the third antenna and the fourth antenna using the second radio frequency chip. The second radio frequency chip is coupled to the third antenna to form a third channel, and is coupled to the fourth antenna to form a fourth channel.
Abstract:
Embodiments of the present invention provide a data transmission method, a data transmission apparatus, a processor, and a mobile terminal. The data transmission method includes determining, by a mobile terminal, whether to use multiple data channels to transmit to-be-transmitted data. The method also includes if determining to use the multiple data channels to transmit the to-be-transmitted data, selecting, by the mobile terminal, at least two activated data channels for the to-be-transmitted data according to current traffic information and service quality information that are of the multiple data channels. Additionally, the method includes using, by the mobile terminal, the selected at least two data channels to transmit the to-be-transmitted data.
Abstract:
The present disclosure discloses a display apparatus, a stereoscopic display apparatus, and an application terminal thereof. The display apparatus includes a display panel and a light collimation module. The display panel includes an RGB pixel array. The RGB pixel array includes multiple RGB pixels disposed at intervals. The light collimation module includes a control electrode layer, a first transparent substrate, a liquid crystal layer, and a second transparent substrate. The control electrode layer is disposed within the intervals between the RGB pixels or at positions that are on the display panel and that are corresponding to the intervals between the RGB pixels. The first transparent substrate is disposed on the display panel and covers the control electrode. The liquid crystal layer is disposed on the first transparent substrate. The second transparent substrate is disposed on the liquid crystal layer.
Abstract:
A terminal includes a first baseband processor, a second baseband processor, a first radio frequency chip, a second radio frequency chip, a first antenna, a second antenna, a third antenna, and a fourth antenna. The first baseband processor is coupled to the first antenna and the second antenna using the first radio frequency chip. The first radio frequency chip is coupled to the first antenna to form a first channel, and is coupled to the second antenna to form a second channel. The second baseband processor is coupled to the third antenna and the fourth antenna using the second radio frequency chip. The second radio frequency chip is coupled to the third antenna to form a third channel, and is coupled to the fourth antenna to form a fourth channel.