摘要:
This sintered R-T-B based rare-earth magnet includes: R2Fe14B type compound crystal grains, including a light rare-earth element RL (which includes at least one of Nd and Pr) as a major rare-earth element R, as main phases; and a heavy rare-earth element RH (which includes at least one of Dy and Tb). Before its surface region is removed, the sintered R-T-B based rare-earth magnet has no layer including the rare-earth element R at a high concentration in that surface region. The sintered R-T-B based rare-earth magnet has a portion in which coercivity decreases gradually from its surface region toward its core portion. The difference in the amount of TRE between a portion of the sintered R-T-B based rare-earth magnet that reaches a depth of 500 μm as measured from its surface region toward its core portion and the core portion of the sintered R-T-B based rare-earth magnet is 0.1 through 1.0.
摘要:
A method for producing a sintered R-T-B based magnet includes the steps of: providing a sintered R-T-B based magnet body 1; providing an RH diffusion source 2 including a metal or an alloy of a heavy rare-earth element RH (which is at least one of Dy an Tb); loading the sintered magnet body 1 and the RH diffusion source 2 into a processing chamber 3 so that the magnet body 1 and the diffusion source 2 are movable relative to each other and brought close to, or in contact with, each other; and performing an RH diffusion process by conducting a heat treatment on the sintered R-T-B based magnet body 1 and the RH diffusion source 2 at a temperature of 500° C. to 850° C. for at least 10 minutes while moving the magnet body 1 and the diffusion source 2 either continuously or discontinuously in the processing chamber 3.
摘要:
In order to make a sintered R-T-B-M magnet so that R2T14B phases that include a lot of Dy in the surface region of the main phase are distributed over the entire magnet, a region including a heavy rare-earth element RH at a high concentration is formed continuously beforehand at an interface between the crystals of an R2T14B compound that is the main phase of the sintered R-T-B-M magnet and the other phases.
摘要:
A method of making a rare-earth alloy granulated powder according to the present invention includes the steps of: preparing a rare-earth alloy powder; generating remnant magnetization in the powder; and granulating the powder by utilizing agglomeration force produced by the remnant magnetization of the powder. Since the agglomeration force produced by the remnant magnetization is utilized, the addition of a granulating agent may be omitted.