Abstract:
Disclosed herein is a method for transmitting, by a terminal, a sounding reference signal (SRS). The terminal receives a grant for uplink multiple subframes from a base station. The terminal determines a first subframe for an SRS transmission of the terminal among the uplink multiple subframes on the basis of SRS transmission position information received from the base station. Further, the terminal transmits the SRS in the first subframe.
Abstract:
Disclosed are signal transmission methods and apparatuses in sidelink communication. A method of a terminal may comprise: receiving sidelink (SL) configuration information from a base station; identifying cyclic prefix extension (CPE) information indicating one or more CPE start positions included in the SL configuration information; configuring a CPE based on the CPE information; and performing SL transmission including the CPE.
Abstract:
Disclosed herein is a method for transmitting, by a terminal, a sounding reference signal (SRS). The terminal receives a grant for uplink multiple subframes from a base station. The terminal determines a first subframe for an SRS transmission of the terminal among the uplink multiple subframes on the basis of SRS transmission position information received from the base station. Further, the terminal transmits the SRS in the first subframe.
Abstract:
Disclosed herein is a method for transmitting, by a terminal, a sounding reference signal (SRS). The terminal receives a grant for uplink multiple subframes from a base station. The terminal determines a first subframe for an SRS transmission of the terminal among the uplink multiple subframes on the basis of SRS transmission position information received from the base station. Further, the terminal transmits the SRS in the first subframe.
Abstract:
A resource usage measuring method and an apparatus performing the same. The resource usage measuring method includes measuring a resource usage in a frequency domain based on a demodulation reference signal (DM-RS) transmitted from a base station, and measuring a resource usage in a time domain based on the DM-RS.
Abstract:
An operating method of a communication node in a network supporting licensed and unlicensed bands is disclosed. An operation method of a base station comprises the steps of: transmitting a PDSCH to a UE in an unlicensed band; receiving an HARQ response to the PDSCH from the UE; and determining a size of a CW on the basis of a proportion of NACKs in HARQ responses. Therefore, a performance of a communication network can be improved.
Abstract:
A method and an apparatus for transmitting and receiving a signal in a communication network are disclosed. A method for operating UE supporting an unlicensed band comprises the steps of: receiving from a base station DMTC-related information including DMTC cycle and DMTC offset; checking DMTC section to which DRS is transmitted based on the DMTC-related information; and receiving from the base station the DRS using sub-frames apart from a sub-frame corresponding to the DRS cycle within the DMTC section. As a result, the performance of a communication network can be improved.
Abstract:
A communication node configures an unlicensed band transmission burst including a plurality of subframes in consideration of an occupancy state of a channel of an unlicensed band and transmits the unlicensed band transmission burst through the unlicensed band. In this case, at least one subframe of the plurality of subframes has a different type from the remaining subframes.
Abstract:
When a feature of the present invention is summarized, disclosed is a frame structure of transmitted and received data in a wireless communication system, including: a plurality of uplink subframes (UL) or downlink subframes (DL) for transmitting and receiving data; and a coexistence synchronization signal preamble for frequency coexistence among asynchronous cells.
Abstract:
The present disclosure relate to a spectrum sensing method and a spectrum sensing device. The spectrum sensing method includes: (a) sampling a received signal: (b) calculating a first operation value relating to a strength of the received signal based on the sampled signal; (c) searching for a first frequency band having the largest correlation with an input signal based on the sampled signal; (d) calculating a first residual component signal by removing a signal component in the first frequency band from the received signal; (e) calculating a second operation value relating to a strength of the first residual component signal; and (f) determining whether the frequency band occupied in the received signal is present based on a relative value of the first operation value and the second operation value.