Abstract:
Techniques use multiple lower bit depth (e.g., 8 bits) codecs to provide higher bit depth (e.g., 12+ bits) high dynamic range images from an upstream device to a downstream device. Multiple layers comprising a base layer and one or more enhancement layers may be used to carry video signals comprising image data compressed by lower bit depth encoders to a downstream device, wherein the base layer cannot be decoded and viewed on its own. Lower bit depth input image data to base layer processing may be generated from higher bit depth high dynamic range input image data via advanced quantization to minimize the volume of image data to be carried by enhancement layer video signals. The image data in the enhancement layer video signals may comprise residual values, quantization parameters, and mapping parameters based in part on a prediction method corresponding to a specific method used in the advanced quantization. Adaptive dynamic range adaptation techniques take into consideration special transition effects, such as fade-in and fade-outs, for improved coding performance.
Abstract:
Techniques use multiple lower bit depth codecs to provide higher bit depth, high dynamic range, images from an upstream device to a downstream device. A base layer and one or more enhancement layers may be used to carry video signals, wherein the base layer cannot be decoded and viewed on its own. Lower bit depth input image data to base layer processing may be generated from higher bit depth high dynamic range input image data via advanced quantization to minimize the volume of image data to be carried by enhancement layer video signals. The image data in the enhancement layer video signals may comprise residual values, quantization parameters, and mapping parameters based in part on a prediction method corresponding to a specific method used in the advanced quantization. Adaptive dynamic range adaptation techniques take into consideration special transition effects, such as fade-in and fade-outs, for improved coding performance.
Abstract:
A sequence of enhanced dynamic range (EDR) images and a sequence of standard dynamic range images are encoded using a backwards-compatible SDR high-definition (HD) base layer and one or more enhancement layers. The EDR and SDR video signals may be of the same resolution (e.g., HD) or at different resolutions (e.g., 4K and HD) and are encoded using a dual-view-dual-layer (DVDL) encoder to generate a coded base layer (BL) and a coded enhancement layer (EL). The DVDL encoder includes a reference processing unit (RPU) which is adapted to compute a reference stream based on the coded BL stream. The RPU operations include post-processing, normalization, inverse normalization, and image registration. Decoders for decoding the coded BL and EL streams to generate a backwards compatible 2D SDR stream and additional 2D or 3D SDR or EDR streams, are also described.
Abstract:
Given an input progressive sequence, a video encoder creates a dual-layer stream that combines a backwards-compatible interlaced video stream layer with an enhancement layer to reconstruct full-resolution progressive video. Given two consecutive frames in the input progressive sequence, vertical processing generates a top field-bottom field (TFBF) frame in a base layer (BL) TFBF sequence, and horizontal processing generates a side-by-side (SBS) frame in an enhancement layer (EL) SBS video sequence. The BL TFBF and the EL SBS sequences are compressed together to create a coded, backwards compatible output stream.
Abstract:
Methods and systems for image processing and delivery of higher dynamic range cinema content are disclosed. A digital cinema signal with a lower dynamic range is obtained from a digital cinema signal with a higher dynamic range, for example through mapping. The lower dynamic range digital cinema signal is encoded and decoded at the transmitting end. The decoded lower dynamic range digital cinema signal is normalized to produce a set of normalization parameters which enable the mapping process at the receiving end to produce a final image with higher dynamic range that is of a higher quality. Alternatively, the higher dynamic range digital cinema signal is also encoded and decoded at the transmitting end, to produce a set of normalization parameters which enable the mapping process at the receiving end to produce a final image with higher dynamic range that is of a higher quality.
Abstract:
Methods and systems for image processing and delivery of higher dynamic range cinema content are disclosed. A digital cinema signal with a lower dynamic range is obtained from a digital cinema signal with a higher dynamic range, for example through mapping. The lower dynamic range digital cinema signal is encoded and decoded at the transmitting end. The decoded lower dynamic range digital cinema signal is normalized to produce a set of normalization parameters which enable the mapping process at the receiving end to produce a final image with higher dynamic range that is of a higher quality. Alternatively, the higher dynamic range digital cinema signal is also encoded and decoded at the transmitting end, to produce a set of normalization parameters which enable the mapping process at the receiving end to produce a final image with higher dynamic range that is of a higher quality.