Abstract:
One example method is provided for dynamic allocation of air interface resources in a cellular network comprising at least three wireless cells located within a geographical proximity of each other, the method comprising determining, by a central managing entity, one or more classification rules for classifying each of said plurality of mobile devices according to the one or more classification rules; providing, by the central management entity, to a group of base stations associated with the at least three cells, information that comprises: information that relates to the determined one or more classification rules; information that relates to semi-static allocation of blocks of air interface resources adapted for use by one or more specific members of the group of base stations.
Abstract:
In one embodiment, a mobile base station includes: an antenna; a transceiver operative to communicate with a user equipment (UE) via said antenna; a processor; and a mobility control application to be executed by said processor and operative: to provide to said UE when in communication with said mobile base station at least a relevant tracking area list from among at least two tracking area lists associated with said mobile base station.
Abstract:
An example method is provided in one example embodiment and may include subscribing to a key distribution service by a plurality of Wi-Fi access points belonging to a same mobility domain; receiving a request from a user equipment to connect to a first Wi-Fi access point of the plurality of Wi-Fi access points belonging to the same mobility domain; determining one or more second Wi-Fi access points of the plurality of Wi-Fi access points belonging to the same mobility domain that neighbor the first Wi-Fi access points; and distributing keying parameters to each of the one or more second Wi-Fi access points. The keying parameters can be associated with 802.11r pairwise master key (PMK) keying parameters.
Abstract:
An example method is provided in one example embodiment and may include determining a presence of user equipment (UE) in relation to small cell radio(s) of a small cell network based on information obtained through the small cell network and one or more parallel networks; and adjusting transmit power for the small cell radio(s) based on the presence of UE in relation to the small cell radio(s). Another example method can include determining that a UE in cell paging channel mode has changed its selected macro cell radio; determining that the UE is allowed service on a small cell radio located in a vicinity of a macro cell coverage area of a selected macro cell radio; and adjusting a transmit power of the small cell radio based on a presence of the UE in a surrounding macro cell coverage area of the small cell radio.
Abstract:
One example method is provided for dynamic allocation of air interface resources in a cellular network comprising at least three wireless cells located within a geographical proximity of each other, the method comprising determining, by a central managing entity, one or more classification rules for classifying each of said plurality of mobile devices according to the one or more classification rules; providing, by the central management entity, to a group of base stations associated with the at least three cells, information that comprises: information that relates to the determined one or more classification rules; information that relates to semi-static allocation of blocks of air interface resources adapted for use by one or more specific members of the group of base stations.
Abstract:
A method is provided for managing load balance in cellular heterogeneous networks. The method comprises: providing a plurality of spectrum carriers for conveying communication signals to/from a macro cell. At least one of the carriers is a shared carrier for conveying communication signals to/from the macro cell and to/from at least one small cell located at the geographical vicinity of the macro cell, and wherein the shared carrier is characterized in that data is the only type of communication signals being conveyed thereat when the cellular network is under congestion. One or more other spectrum carriers are dedicated carriers adapted to essentially convey voice calls, and wherein user terminals are steered away from dedicated carriers to the shared carrier, so that when a data session is initiated for a user terminal camped on the shared carrier, that session will be conveyed one or more of the small cells.
Abstract:
A SON element which is operative to carry out at least two different SON functions is provided, wherein each of the SON functions is associated with at least one SON related action, and wherein a SON related action, initiated by triggering a SON function, would have been adversely affected by another SON related action, initiated by triggering another SON function, had the SON element not affected a modification in operating conditions of the cellular network, wherein the SON element is operative to: (a) assign priorities to the different SON functions; (b) assign different weights to the SON related actions; and (c) coordinate execution of SON related actions, that when executed are carried out in a way that does not breach the priorities hierarchy and the weights' order assigned to the SON related actions, thereby improving operation of the cellular network.