Abstract:
The present disclosure provides a display panel and an electronic device. The display panel includes: a base substrate; a pixel arranged on the base substrate, wherein the pixel includes a plurality of sub-pixel drive circuits sequentially arranged in the first direction in the display area, each of the sub-pixel drive circuits includes a switching transistor, a detection transistor and a storage capacitor, the switching transistor and the detection transistor are respectively located on both sides of the storage capacitor in a second direction; a first gate line configured to provide a first scanning signal to the plurality of sub-pixel drive circuits; and a second gate line configured to provide a second scanning signal to the plurality of sub-pixel drive circuits.
Abstract:
A phase shifter and a liquid crystal antenna are provided. The phase shifter includes a first substrate and a second substrate opposite to each other, and a liquid crystal layer between the first substrate and the second substrate. The first substrate includes a first base plate and a first electrode at a side of the first base plate proximal to the liquid crystal layer. The second substrate includes a second base plate and a second electrode at a side of the second base plate proximal to the liquid crystal layer. The phase shifter further includes an auxiliary capacitor connected to the first electrode.
Abstract:
The present disclosure provides a signal conditioner, an antenna device and a manufacturing method. The signal conditioner includes: a microstrip line including a first portion and a second portion; an insulating layer including a first insulating layer covering the first portion; at least one electrode; a liquid crystal layer covering the microstrip line, the insulating layer, and the at least one electrode; and a common electrode line. A first end of the first portion is connected to a first end of the second portion. A second end of the first portion is connected to a second end of the second portion. The at least one electrode includes a first electrode on a side of the first insulating layer facing away from the first portion. The common electrode line is on a side of the liquid crystal layer facing away from the microstrip line.
Abstract:
Provided are a shift register unit, a driving method, a gate drive circuit and a display device in the field of display technology. The shift register unit includes an input circuit, an output circuit, and a first pull-down circuit. The output circuit is coupled to a first clock signal terminal, a first node, a first DC power supply terminal, and a first output terminal respectively, and configured to output a first power supply signal from the first DC power supply terminal to the first output terminal in response to a potential of the first node and a first clock signal provided by the first clock signal terminal.
Abstract:
A switching element, a manufacturing method thereof, an array substrate and a display device are provided. The switching element includes: a base substrate; a first thin-film transistor (TFT), disposed on the base substrate; and a second TFT, disposed on the first TFT, wherein the first TFT includes a first electrode and a second electrode, and the first TFT and the second TFT share the first electrode and the second electrode.
Abstract:
A switching element, a manufacturing method thereof, an array substrate and a display device are provided. The switching element includes: a base substrate; a first thin-film transistor (TFT), disposed on the base substrate; and a second TFT, disposed on the first TFT, wherein the first TFT includes a first electrode and a second electrode, and the first TFT and the second TFT share the first electrode and the second electrode.
Abstract:
Embodiments of the present disclosure provide a shift register and a driving method thereof and a gate driving circuit. The shift register comprises an inputting circuit, a first outputting circuit, and a second outputting circuit. The first outputting circuit may comprise a first pulling-up sub-circuit, a first outputting sub-circuit, a first pulling-down sub-circuit, and a switching sub-circuit. A controlling terminal of switching sub-circuit is coupled to a controlling terminal of the first pulling-up sub-circuit. An inputting terminal of the switching sub-circuit is coupled to the outputting terminal of a first outputting sub-circuit. The second outputting circuit may comprise a second pulling-up sub-circuit, a second outputting sub-circuit, and a second pulling-down sub-circuit. An inputting terminal of the second pulling-up sub-circuit is coupled to an outputting terminal of the switching sub-circuit. A controlling terminal of the second outputting sub-circuit is coupled to an outputting terminal of the second pulling-up sub-circuit.
Abstract:
An AMOLED display backboard, a display device and a manufacturing method of an AMOLED display backboard are provided. In the AMOLED display backboard, the number of VDD lines (601) is less than that of sub-pixels in one row, thus reducing area occupied by the VDD lines (601), lessening occupation of VDD lines (601) on the area of circuit board, while realizing connection of circuit input terminals (603) of respective sub-pixels and VDD lines (601) by the VDD connecting line (602).
Abstract:
The present disclosure provides a display array substrate, a compensation method, a display panel and a display device. The display array substrate includes at least one power line and a voltage application unit. The at least one power line is connected to pixels in at least one column within an effective display region on the display array substrate. The power application unit is arranged outside the effective display region and configured to apply power supply voltages to at least two power supply voltage input points on the at least one power line. An absolute value of a voltage difference between the at least two power supply voltage input points is less than a predetermined voltage threshold.
Abstract:
A pixel driving circuit, array substrate and display apparatus, comprise: data line for providing data voltage; gate line for providing scanning voltage; first power supply line for providing first power supply voltage; second power supply line for providing second power supply voltage; light emitting device connected to second power supply line; driving transistor connected to first power supply line; storage capacitor having first terminal connected to gate of driving transistor and configured to transfer information to gate of driving transistor; resetting unit configured to reset voltage across storage capacitor as predetermined signal voltage; data writing unit configured to write information into second terminal of storage capacitor; compensating unit configured to write information into first terminal of storage capacitor; and light emitting control unit configured to write first power supply voltage into second terminal of storage capacitor and control driving transistor to drive light emitting device to emit light.