Abstract:
Embodiments of the invention provide a best-effort scheduled access method and system that enable nodes to request, and a hub to assign, tentative, but not committed, scheduled allocations, referred to as unscheduled bilink allocations, in which data traffic is transferred between the nodes and the hub on a best-effort basis. The tentative allocations will be available if the network of the hub still has enough bandwidth, but will be shifted or reduced otherwise. This invention unifies tentative and committed scheduled allocations in the same access framework, thereby facilitating access scheduling and offering access flexibility.
Abstract:
A system and method are provided that are operable for network communications that promote network devices to receive a transmit request, transmit a first part of a frame by a physical layer without a second part of the frame from a medium access control layer, and request the second part of the frame by the physical layer from the medium access control layer. These systems and methods also allow, in some embodiments, for the transmitting of the second part of the frame by the physical layer with data from the medium access control layer.
Abstract:
A system and method for establishing a mutual entity authentication and a shared secret between two devices using displayed values on each device. Unique first private keys and first public keys are assigned to both devices. The public keys are exchanged between the two devices. Both devices compute a shared secret from their own private keys and the received public keys. Both devices compute, exchange, and verify their key authentication codes of the shared secret. If verification is successful, both devices use the shared secret to generate a displayed value. One or more users compare the displayed values and provide an indication to the devices verifying whether the displays match. If the displays match, then the devices compute a shared master key, which is used either directly or via a later-generated session key for securing message communications between the two devices.
Abstract:
Authentication methods are provided that allow for superior security, power consumption, and resource utilization over existing authentication methods. By computing only two hashes of a shared secret password for each protocol run, the methods described in this disclosure dramatically reduce the computational power needed to perform authentication. Similarly, by exchanging these hashes bitwise or piecewise for verification, rather than performing new hashes including each bit of the password separately, the methods described in this disclosure reveal less information about the password being authenticated than existing methods. The methods described in this disclosure also allow for authentication using fewer messages and with lower latency, reducing the amount of operational power used in the authentication process.
Abstract:
A system and method for authenticating and encrypting messages for secure transmission is disclosed. A frame to be transmitted between devices comprises a frame header and a frame body. The frame body includes a security sequence number (SSN), frame payload, and message integrity code (MIC). The SSN is incremented by one for each frame transmitted using a same pairwise temporal key (PTK). A nonce is formed using the frame header and the SSN. Counter blocks Ctri and a first input block B0 are created using the nonce. Payload blocks Bi are created from the frame payload. The frame payload encrypted by sequentially applying the blocks of payload data Bi and corresponding counter blocks Ctri to a cipher function. The MIC is computed by cipher block chaining a cipher function applied to blocks B0 and Bi, and counter block Ctr0. The cipher functions all use the PTK.
Abstract:
Methods for key exchange and mutual authentication are provided that allow for inherent authentication and secret key derivation of parties communicating through an unsecured medium. These methods allow for greater security than existing key exchange and authentication methods while requiring little or no additional energy or time compared with a basic Diffie-Hellman key exchange. These methods allow for secure communication with small, low-power devices and greater security for any devices communicating through an unsecured medium.
Abstract:
A method and a system for a quality of service (QoS) point coordinator (PC) for a basic service set (BSS) in a wireless local area network (WLAN) is disclosed. The PC includes a QoS management entity (QME) and an admission control entity (ACE). The QME receives at least one reservation request message that characterizes one of a QoS session and a QoS application (session/application) that can be of a continuous/periodic flow type that is time sensitive, or can be of a discontinuous/bursty flow type that is time tolerant. The reservation request message contains at least one QoS parameter set and requests a resource of a communication channel in the BSS for the QoS session/application. The communication channel is organized into superframes, such that each superframe includes a contention-free period (CFP) and a contention-period (CP). The reservation request message requests a predetermined bandwidth of each CFP of the communication channel in the BSS. The ACE performs macro bandwidth management for QoS traffic transport of the session/application over a medium access control (MAC) sublayer for the communication channel by determining whether to grant the reservation request based on at least one QoS parameter set associated with the session/application.
Abstract:
Embodiments of the application describe a method and system for discovering and authenticating communication devices and establishing a secure communication link within a wireless home network without requiring a secure channel. According to an embodiment, communication devices exchange public keys using multiple messages each including at least a portion of the public key of the sending device. The devices authenticate the receipt of the public key and establish a shared master key. The shared master key is used to further derive a session key for securing the application data between the communicating devices for a current session.
Abstract:
A method and system for random access control is disclosed. A backoff counter is used to determine the start time of a contended allocation for a device. The backoff counter is set to an integer randomly drawn from the interval [1, CW], where CW is a contention window value selected based upon the priority of the traffic to be transmitted. The backoff counter is decremented for each idle contention slot detected. When the backoff counter reaches zero, the device attempts to transmit in the next contention slot. If the device receives no acknowledgement or an incorrect acknowledgment, then the transmission has failed. After a failed transmission, CW is set by alternately doubling the CW value up to a CWmax value for the user priority. CW is unchanged, if it was doubled in the last setting; and CW is doubled, if it was unchanged in the last setting.
Abstract:
A method and a system are disclosed for providing quality of service (QoS)-driven channel access within a basic service set (BSS) in a wireless network. At least one available TO is allocated to a selected non-PC station having traffic to transmit. A multipoll frame containing information relating to at least two allocated TOs is then sent from the PC station containing information relating to each allocated TO.