Abstract:
A gate drive circuit may include a latch circuit, a first transmission gate, and a second transmission gate. The first transmission gate and the second transmission gate may both be directly coupled to the latch circuit and may be directly coupled to a first gate line and a second gate line, respectively. The latch circuit may receive an electrical signal from a third gate line adjacent to the second gate line, such that the electrical signal is configured to reset a state of the latch circuit.
Abstract:
A display may have a stretchable portion with hermetically sealed rigid pixel islands. A flexible interconnect region may be interposed between the hermetically sealed rigid pixel islands. The hermetically sealed rigid pixel islands may include organic light-emitting diode (OLED) pixels. A conductive cutting structure may have an undercut that causes a discontinuity in a conductive OLED layer to mitigate lateral leakage. The conductive cutting structure may also be electrically connected to a cathode for the OLED pixels and provide a cathode voltage to the cathode. First and second inorganic passivation layers may be formed over the OLED pixels. Multiple discrete portions of an organic inkjet printed layer may be interposed between the first and second inorganic passivation layers.
Abstract:
To minimize the width of a non-light-emitting border region around an opening in the active area, data lines may be stacked in the border region. Data line portions may be formed using three metal layers in three different planes within the border region. A metal layer that forms a positive power signal distribution path in the active area may serve as a data line portion in the border region. A metal layer may be added in the border region to serve as a data line portion in the border region. Data line signals may also be provided to pixels on both sides of an opening in the active area using supplemental data line paths. A supplemental data line path may be routed through the active area of the display to electrically connect data line segments on opposing sides of an opening within the display.
Abstract:
A display may have rows and columns of pixels. Gate lines may be used to supply gate signals to rows of the pixels. Data lines may be used to supply data signals to columns of the pixels. The data lines may include alternating even and odd data lines. Data lines may be organized in pairs each of which includes one of the odd data lines and an adjacent one of the even data lines. Demultiplexer circuitry may be configured dynamically during data loading and pixel sensing operations. During data loading, data from display driver circuitry may be supplied, alternately to odd pairs of the data lines and even pairs of the data lines. During sensing, the demultiplexer circuitry may couple a pair of the even data lines to sensing circuitry in the display driver circuitry and then may couple a pair of the odd data lines to the sensing circuitry.
Abstract:
To minimize the width of a non-light-emitting border region around an opening in the active area, data lines may be stacked in the border region. Data line portions may be formed using three metal layers in three different planes within the border region. A metal layer that forms a positive power signal distribution path in the active area may serve as a data line portion in the border region. A metal layer may be added in the border region to serve as a data line portion in the border region. Data line signals may also be provided to pixels on both sides of an opening in the active area using supplemental data line paths. A supplemental data line path may be routed through the active area of the display to electrically connect data line segments on opposing sides of an opening within the display.
Abstract:
A display may have rows and columns of pixels. Gate lines may be used to supply gate signals to rows of the pixels. Data lines may be used to supply data signals to columns of the pixels. The data lines may include alternating even and odd data lines. Data lines may be organized in pairs each of which includes one of the odd data lines and an adjacent one of the even data lines. Demultiplexer circuitry may be configured dynamically during data loading and pixel sensing operations. During data loading, data from display driver circuitry may be supplied, alternately to odd pairs of the data lines and even pairs of the data lines. During sensing, the demultiplexer circuitry may couple a pair of the even data lines to sensing circuitry in the display driver circuitry and then may couple a pair of the odd data lines to the sensing circuitry.
Abstract:
An electronic device may include a display such as a light-emitting diode display. The electronic device may be a head-mounted device that provides a virtual reality or augmented reality environment to a user. To reduce artifacts in the display, a display may be operable in both a normal scanning mode and a partial scanning mode. In the normal scanning mode, every row of the display may be enabled to emit light in each frame. In the partial scanning mode, only a subset of the rows of the display may be enabled to emit light in each frame. The display may have a higher refresh rate in the partial scanning mode than in the normal scanning mode. To ensure uniform transistor stress across the display, the scanning driver for the display may scan the disabled rows in the partial scanning mode even though the rows will not be used to emit light.
Abstract:
A display may have display driver circuitry. Signal routing lines may supply multiplexed signals from the display driver circuitry to demultiplexer circuitry. The demultiplexer circuitry may provide corresponding demultiplexed signals to the pixels over signal routing lines. The demultiplexer circuitry may have demultiplexer circuit blocks such as 1:N demultiplexer circuit blocks. Each of the demultiplexer circuit blocks may have the same area and layout. The demultiplexer circuit blocks may run across the width of the display. A first portion of the demultiplexer circuit blocks may extend in a straight line parallel to an edge of the active area. A second portion of the demultiplexer circuit blocks may be arranged in a staircase pattern that angles away from the first portion of demultiplexer circuit blocks.
Abstract:
To minimize the width of a non-light-emitting border region around an opening in the active area, data lines may be stacked in the border region. Data line portions may be formed using three metal layers in three different planes within the border region. A metal layer that forms a positive power signal distribution path in the active area may serve as a data line portion in the border region. A metal layer may be added in the border region to serve as a data line portion in the border region. Data line signals may also be provided to pixels on both sides of an opening in the active area using supplemental data line paths. A supplemental data line path may be routed through the active area of the display to electrically connect data line segments on opposing sides of an opening within the display.
Abstract:
An electronic device may include a display such as a light-emitting diode display. The electronic device may be a head-mounted device that provides a virtual reality or augmented reality environment to a user. To reduce artifacts in the display, a display may be operable in both a normal scanning mode and a partial scanning mode. In the normal scanning mode, every row of the display may be enabled to emit light in each frame. In the partial scanning mode, only a subset of the rows of the display may be enabled to emit light in each frame. The display may have a higher refresh rate in the partial scanning mode than in the normal scanning mode. To ensure uniform transistor stress across the display, the scanning driver for the display may scan the disabled rows in the partial scanning mode even though the rows will not be used to emit light.