Abstract:
An image encoding method and an image decoding method, the image encoding method including: degrading a quality of a first image which is obtained through a sensor of an imaging device to generate a second image having a target resolution; generating additional information which represents a transform relationship between the first and second images; and transmitting the additional information and the second image.
Abstract:
Provided are an apparatus and method for providing an object based audio file, and an apparatus and method for playing back an object based audio file. The object based audio file producing apparatus may include a bitstream generator to generate a bitstream about an object based audio file including a plurality of audio object frames and a file header for an object based audio service; and a bitstream transmitter to transmit the bitstream to the object based audio file playback apparatus. The plurality of audio object frames may include a frame storing a audio source in which all of a plurality of audio frames is mixed and a frame storing each of the audio objects.
Abstract:
Provided is a system and method for transmitting/receiving an object-based audio. The system includes: a pre-processing unit for receiving an audio signal from diverse sources of outside and creating an object-based audio signal through a pre-processing procedure; an object-based audio editing unit for editing the object-based audio signal from the pre-processing unit and organizing an audio scene; an object-based audio coding unit for coding/multiplexing information on the object-based audio signal and the audio scene from the object-based audio editing unit and creating object-based audio contents; and a transmitting unit for transmitting the object-based audio contents from the object-based audio coding unit.
Abstract:
Disclosed is a phase shifter having a power dividing function. The phase shifter includes: an input port for receiving a radio frequency (RF) signal; a power dividing unit for dividing the RF signal into a first divided signal of which phase is to be varied and a second divided signal having a fixed phase value; a first output port for outputting the second divided signal having the fixed phase value; a phase shift unit for dividing the first divided signal into a third divided signal and a fourth divided signal wherein the third divided signal and the fourth divided signal move in opposite directions; a phase delay unit for shifting phase of the third divided signal and the fourth divided signal based on a difference in a path length of the third divided signal and the fourth divided signal, to thereby generate phase-shifted signals; and at least two second output ports connected to the phase delay unit, for outputting the phase-shifted signals.
Abstract:
Provided are a method for generating an instantaneous decoding refresh (IDR) unit for trick play, and a trick play system and method using the same. The trick play system includes: a speed information input unit configured to receive a speed value; a transmission condition determining unit configured to determine instantaneous decoding refresh (IDR) transmission conditions based on the speed value inputted through the speed information input unit; a double-speed IDR-unit generating unit configured to generate a double-speed IDR-unit by adjusting the number and data size of video frames to be transmitted in accordance with the transmission conditions determined by the transmission condition determining unit; and a transmitting unit configured to transmit the generated double-speed IDR-unit to an external user terminal.
Abstract:
Disclosed is an electrode active material comprising: a core layer capable of repeating lithium intercalation/deintercalation; an amorphous carbon layer; and a crystalline carbon layer, successively, wherein the core layer comprises at least two core particles. A secondary battery comprising the same electrode active material is also disclosed. The electrode active material can inhibit variations in volume of the core layer that may occur during repeated charge/discharge cycles, since the core layer comprising at least two core particles, each core particle having an increased area that is in contact with the carbon layer coated thereon. Therefore, the battery using the electrode active material can provide improved cycle life characteristics.
Abstract:
A fractional caching method and an adaptive contents transmitting method using the same are provided. The fractional caching method includes the steps of setting up a divided location for dividing a certain object into two parts, receiving an evict request for acquiring a space in the inside of the cache, when the evict request is transmitted, dividing a plurality of objects stored in the cache into a prefix-Object located in the head of the object and a suffix-Object located in the tail of the object from the divided location, and removing only the suffix-Object of each object, wherein the divided location is set up at a size rate that a size of the prefix-Object is in inverse proportion to the number of the destination types.
Abstract:
Provided are an electrode active material having a plurality of pores and a secondary battery including the same, and more particularly, a porous electrode active material including silicon-based oxide expressed by SiOx (0.5≦x≦1.2) and having a Brunauer, Emmett, and Teller (BET) specific surface area ranging from 2 m2/g to 100 m2/g, and a secondary battery including a cathode including a cathode active material, a separator, an anode including an anode active material, and an electrolyte, in which the anode active material includes a porous electrode active material including silicon-based oxide expressed by SiOx (0.5≦x≦1.2) and having a BET specific surface area ranging from 2 m2/g to 100 m2/g.