Abstract:
A method for producing ethylene oxide comprising: providing one or more feed components, wherein the one or more feed components contains at least ethylene obtained by dehydrating ethanol; contacting the one or more feed components with a desulfurization catalyst comprising a high surface area support and an amount of silver, wherein at least 20% of the silver is present as oxidized silver; and contacting the one or more feed components with a silver-containing epoxidation catalyst disposed inside an ethylene oxide reactor to form a reaction gas comprising ethylene oxide.
Abstract:
A silver-based ethylene oxide catalyst that can be used in the vapor phase conversion of ethylene to ethylene oxide in the presence of oxygen is provided that includes a carrier; a catalytic effective amount of silver; and a promoting amount of at least one promoter, wherein the catalyst has a surface sodium content of 100 ppm or less.
Abstract:
The invention relates to a method of generating a signal for adjusting a parameter of a process for ethylene oxide production comprising the steps: Acquiring (100) process data of the process for ethylene oxide production, Predicting (200) a future value for the parameter based on the process data, Comparing (300) the future value to a predefined reference and based on a result of said comparison Generating (400) the signal for adjusting the parameter.
Abstract:
A baffle (i.e., tube support) for use in a shell-and-tube heat exchange reactor, such as, for example, an ethylene oxide (EO) reactor, is provided that accommodates reduced tube pitch, and thus more catalyst packed tubes can be inside the reactor. The baffle, which can be referred to herein as a corrugated grid support, includes a plurality of corrugated stainless steel strips which sit into each other and form a grid pattern having tube openings. Each tube opening is configured to permit a catalyst packed tube to be inserted therein, while allowing a sufficient open area along the shell side of the tube to permit coolant to flow through the reactor.
Abstract:
Reduced tube pitch within a shell-and-tube heat exchange reactor such as, for example, an EO reactor, is provided by utilizing a welding material that has a high tensile (i.e., a tensile strength of greater than 600 MPa). Reduced tube pitch allows for more elongated tubes (the tubes are filled with a catalyst) to be present in a reactor, and thus a smaller reactor can be manufactured. Notably, the use of a high tensile strength welding material allows the implementation of a small welding groove located between a beveled sidewall of a beveled upper portion of an opening provided in a tube sheet overlay material (that is located atop a tube sheet) and an outermost sidewall of the elongated tube passing through the opening in the tube sheet overlay material.
Abstract:
An ethylene oxide (EO) reactor is provided in which a removable impingement basket is configured to be inserted into the reactor inlet pipe of the EO reactor. The removable impingement basket provides protection for the silver-based catalyst filled tubes and other components that are present inside the EO reactor as well as providing another access point into the EO reactor. The removable impingement basket also can provide better distribution of the inlet gas as compared to an EO reactor containing a non-removable impingement plate.
Abstract:
A method for the oxidation of ethylene to form ethylene oxide which comprises: providing an aqueous stream containing ethylene glycol and impurities; introducing the aqueous stream in a first ion exchange treatment bed to reduce the content of these impurities; determining whether an outlet of the first ion exchange treatment bed has a conductivity greater than about 5 μS/cm; upon determining that the outlet of the first ion exchange treatment bed has a conductivity greater than about 5 μS/cm, introducing the outlet of the first ion exchange treatment bed into a second ion exchange treatment bed; and upon determining that the outlet of the first ion exchange treatment bed has a conductivity greater than about 60 μS/cm, redirecting the introduction of the aqueous stream to the second ion exchange treatment bed and regenerating the first ion exchange bed.
Abstract:
An improved process for the recovery of ethylene oxide from the aqueous scrubbing solution in which the ethylene oxide is recovered into a vaporous stream highly enriched in ethylene oxide.
Abstract:
A method for the oxidation of ethylene to form ethylene oxide which comprises: providing an aqueous stream containing ethylene glycol and impurities; introducing the aqueous stream in a first ion exchange treatment bed to reduce the content of these impurities; determining whether an outlet of the first ion exchange treatment bed has a conductivity greater than about 5 μS/cm; upon determining that the outlet of the first ion exchange treatment bed has a conductivity greater than about 5 μS/cm, introducing the outlet of the first ion exchange treatment bed into a second ion exchange treatment bed; and upon determining that the outlet of the first ion exchange treatment bed has a conductivity greater than about 60 μS/cm, redirecting the introduction of the aqueous stream to the second ion exchange treatment bed and regenerating the first ion exchange bed.
Abstract:
A silver impregnation solution containing: (i) silver ions, (ii) a polar organic additive containing two to four carbon atoms and two to four functional groups selected from hydroxy, carboxylic acid, and amine groups, provided that a carboxylic acid group can only be present along with a hydroxy or amine group, and provided that an amine group can only be present along with a hydroxy or carboxylic acid group; and (iii) water; wherein components (i) and (ii) are water soluble and dissolved in the impregnation solution. Also described herein is a method for producing a catalyst effective in the oxidative conversion of ethylene to ethylene oxide, the method comprising subjecting a refractory carrier impregnated with the above-described silver impregnation solution to a calcination process. Also described herein is a method for converting ethylene to ethylene oxide by use of the foregoing silver catalyst, as produced by the above-described silver impregnation solution.