Abstract:
A transducer is configured to couple to the cochlear fluid so as to transmit sound with low amounts of energy, such that feed back to a microphone positioned in the ear canal is inhibited substantially. The cochlear fluid coupled hearing device can allow a user to determine from which side a sound originates with vibration of the cochlea and the user can also receive sound localization cues from the device, as feedback can be substantially inhibited. The transducer may be coupled to the cochlear fluid with a thin membrane disposed between the transducer and the cochlear fluid, for example with a fenestration in the cochlea. In some embodiments, a support coupled to the transducer directly contacts the fluid of the cochlea so as to couple the transducer to the cochlear fluid.
Abstract:
A hearing device can allow a user to determine from side which a sound originates with bone conduction vibration of the cochlea and the user can also receive sound localization cues from the device, as feedback can be substantially inhibited with bone conduction vibration of the cochlea. An output transducer assembly can be positioned on a first side of the user to vibrate a first bone tissue near a first cochlea with a first amount of energy, such vibration of a second cochlea on a second side with a second amount of energy is attenuated substantially, for example at least about 6 db, such that the user can localize the sound to the first side. A microphone may be located on the first side and coupled to the output transducer assembly, such that the user localizes the sound to the first side detects sound localization cues.
Abstract:
Hearing systems for both hearing impaired and normal hearing subjects comprise an input transducer and a separate output transducer. The input transducer will include a light source for generating a light signal in response to either ambient sound or an external electronic sound signal. The output transducer will comprise a light-responsive transducer component which is adapted to receive light from the input transducer. The output transducer component will vibrate in response to the light input and produce vibrations in a component of a subject's hearing transduction pathway, such as the tympanic membrane, a bone in the ossicular chain, or directly on the cochlea, in order to produce neural signals representative of the original sound.
Abstract:
Minimally invasive methods, systems and devices are provided for qualitatively and quantitatively assessing collateral ventilation in the lungs. In particular, collateral ventilation of a target compartment within a lung of a patient is assessed by advancement of a catheter through the tracheobronchial tree to a feeding bronchus of the target compartment. The feeding bronchus is occluded by the catheter and a variety of measurements are taken with the use of the catheter in a manner which is of low risk to the patient. Examples of such measurements include but are not limited to flow rate, volume and pressure. These measurements are used to determine the presence of collateral ventilation and to quantify such collateral ventilation.
Abstract:
Lung conditions are treated by implanting a flow restrictor in a passageway upstream from a diseased lung segment. The restrictor will create an orifice at the implantation site which inhibits air exchange with the segment to induce controlled atelectasis and/or hypoxia. Controlled atelectasis can induce collapse of the diseased segment with a reduced risk of pneumothorax. Hypoxia can promote gas exchange with non-isolated, healthy regions of the lung even in the absence of lung collapse.
Abstract:
An output assembly is sized for placement in the middle and inner ear, such that removal of bone can be decreased. The output assembly may comprise at least one photo detector, a demultiplexer and an electrode array sized to pass through an incision in the eardrum. An input transducer assembly is configured to transmit a multiplexed optical signal to the output assembly. The input assembly can be configured to transmit the multiplexed optical signal through the eardrum, such that tissue removal can be decreased and the device can be placed without removal of bone, for example. The multiplexed optical signal may comprise a pulse width modulated signal so as to decrease the effect of non-linearities of the light source and light detector and provide quality sound to the user.
Abstract:
An output assembly comprises at least one light detector configured for placement under skin near a temporal bone so as to couple with a behind the ear unit coupled with the Pinna. The area of the at least one detector may comprise an area to couple with a light source. As the area of the detector under the skin can be large the at least one detector under the skin can couple efficiently with a light source. An input transducer assembly can be configured to transmit light energy to the output assembly with the multiplexed optical signal through the skin tissue. The multiplexed optical signal may comprise a pulse width modulated signal so as to decrease the effect of non-linearities of the light source and light detector and provide quality sound to the user.
Abstract:
Hearing systems for both hearing impaired and normal hearing subjects comprise an input transducer and a separate output transducer. The input transducer will include a light source for generating a light signal in response to either ambient sound or an external electronic sound signal. The output transducer will comprise a light-responsive transducer component which is adapted to receive light from the input transducer. The output transducer component will vibrate in response to the light input and produce vibrations in a component of a subject's hearing transduction pathway, such as the tympanic membrane, a bone in the ossicular chain, or directly on the cochlea, in order to produce neural signals representative of the original sound.
Abstract:
Minimally invasive methods, systems and devices are provided for qualitatively and quantitatively assessing collateral ventilation in the lungs. In particular, collateral ventilation of a target compartment within a lung of a patient is assessed by advancement of a catheter through the tracheobronchial tree to a feeding bronchus of the target compartment. The feeding bronchus is occluded by the catheter and a variety of measurements are taken with the use of the catheter in a manner which is of low risk to the patient. Examples of such measurements include but are not limited to flow rate, volume and pressure. These measurements are used to determine the presence of collateral ventilation and to quantify such collateral ventilation.
Abstract:
Hearing systems for both hearing impaired and normal hearing subjects comprise an input transducer and a separate output transducer. The input transducer will include a light source for generating a light signal in response to either ambient sound or an external electronic sound signal. The output transducer will comprise a light-responsive transducer component which is adapted to receive light from the input transducer. The output transducer component will vibrate in response to the light input and produce vibrations in a component of a subject's hearing transduction pathway, such as the tympanic membrane, a bone in the ossicular chain, or directly on the cochlea, in order to produce neural signals representative of the original sound.