Abstract:
The foregoing problem is solved with a toner for the development of an electrostatic image obtained by externally adding agglomerated particles to toner particles containing a binder resin and a colorant, characterized in that the agglomerated particles are made of (i) a particulate resin alone, (ii) a particulate lubricant alone or (iii) at least two particulate materials selected from the group consisting of particulate resin, particulate lubricant and inorganic particulate material and have a shape factor of 130 or more and a volume-average particle diameter of from 0.5 &mgr;m to 10 &mgr;m.
Abstract:
Described herein are resin materials used for a member for an image forming apparatus. These resin materials can include a polymer formed by polymerization of at least one acrylic resin having (i) a content ratio (molar ratio) of hydroxyl groups of side chains each containing 10 or more carbon atoms to hydroxyl groups of side chains each containing less than 10 carbon atoms that is less than 1/3; (ii) at least one polyol that contains plural hydroxyl groups in which all the hydroxyl groups are connected together through a chain containing 6 or more carbon atoms; and (iii) an isocyanate. The resin material can further include a polymerization ratio of about 0.1 or more and about 10 or less, the polymerization ratio being a ratio (B/A) of a total molar amount (B) of hydroxyl groups contained in all the polyols used for the polymerization to a total molar amount (A) of hydroxyl groups contained in all the acrylic resins used for the polymerization.
Abstract:
Provided is a transparent protective film having a self-repairability and a surface coefficient of kinetic friction with respect to copy paper which is measured based on JISK7125 (1999) of 0.7 or less and a transparent protective film having a self-repairability and a coefficient of kinetic friction of 0.4 or less when a sapphire needle is made to reciprocate on the surface under a certain load.
Abstract:
An optical device for holographic recording or reading is provided and includes: a light emission unit that emits light to be irradiated on an optical recording medium, the light being recording or reading light; a first prism unit that moves in accordance with a moving speed of the optical recording medium and refracts the light to move the light irradiated on the optical recording medium over a distance in a moving direction of the optical recording medium so that the light is irradiated on substantially the same position on the optical recording medium for a period of time; and a second prism unit that moves in accordance with the moving speed of the first prism unit to compensate for an optical path length of the light.
Abstract:
A hologram recording material contains a molecule having intrinsic birefringence and a photoresponsive macromolecule represented by the following formula (1). in formula (1), L1 representing a bivalent linking group, X representing a group having a substituent constant σ based on Hammett's rule of a value of more than 0, the maximum absorption wavelength of an azobenzene group bonding to X being approximately 360 nm or less, A representing a group that is a component of a repeating unit with a carbon number of 2 or more that is a component of a macromolecular main chain, nx representing an integer of 1 or 2, and n representing an integer of 1 or more.
Abstract:
A hologram recording method is disclosed in which: signal light includes a plurality of arranged reversal regions in which lightness and darkness of plural pixels of a light and dark image is reversed for an intensity distribution of the light and dark image; the signal light is Fourier-transformed; the Fourier-transformed signal light and reference light are illuminated onto an optical recording medium; and the signal light is recorded as a hologram. Also is disclosed an apparatus capable of implementing the hologram recording method, and an optical recording medium usable with the method.
Abstract:
The present invention provides an optical information reading device includes: a light source that irradiates, with reference beam, a hologram recorded in an optical recording medium; a reading unit that reads information from a holographic image reconstructed by the reference beam being diffracted by the hologram; a housing; a contact member of the housing contacting a paper; an open portion formed in the contact member, through which the optical recording medium is exposed and towards which the reference beam is emitted; an alignment mark formed at a periphery of the open portion, the reference beam irradiating the hologram satisfying a holographic image reconstruction condition by the alignment mark being aligned with an optical recording medium alignment mark recorded on the optical recording medium; and a viewing portion that is positioned in the housing and through which the alignment mark and the optical recording medium alignment mark are visible.
Abstract:
A hologram recording method for recording information of signal light as holograms in an optical recording medium, which includes illuminating signal light at the optical recording medium; illuminating reference light at the optical recording medium simultaneously with the signal light such that an interference pattern is formed by the signal light and the reference light intersecting in the optical recording medium; and shifting a region in the optical recording medium at which the signal light and the reference light intersect, by shifting an illumination position of the reference light along an optical axis of the signal light, thereby recording a plurality of holograms in the recording medium.
Abstract:
A hologram reproduction method for reproducing a hologram from an optical recording medium in which the hologram is recorded by Fourier transforming a signal light, in which digital data is represented by an image of intensity distribution, and a reference light, and simultaneously irradiating the lights in a state in which a direct current component is removed from at least the Fourier transformed signal light onto the optical recording medium is provided. The method including: irradiating a read out reference light onto the optical recording medium, and generating a diffracted light from the recorded hologram; generating all or a part of a direct current component contained in a Fourier transformed image of the signal light; combining the diffracted light and the generated all or a part of the direct current component, and generating a combined beam; and reproducing the signal light by inverse-Fourier transforming the combined beam.
Abstract:
An optical device for holographic recording or reading is provided and includes: a light emission unit that emits light to be irradiated on an optical recording medium, the light being recording or reading light; a first prism unit that moves in accordance with a moving speed of the optical recording medium and refracts the light to move the light irradiated on the optical recording medium over a distance in a moving direction of the optical recording medium so that the light is irradiated on substantially the same position on the optical recording medium for a period of time; and a second prism unit that moves in accordance with the moving speed of the first prism unit to compensate for an optical path length of the light.